Given two parallelisms of a projective space we describe a construction, called blending, that yields a (possibly new) parallelism of this space. For a projective double space (ℙ,∥ℓ,∥) over a quaternion skew field we characterise the “Clifford-like” parallelisms, i.e. the blends of the Clifford parallelisms ∥ℓ and ∥, in a geometric and an algebraic way. Finally, we establish necessary and sufficient conditions for the existence of Clifford-like parallelisms that are not Clifford.

Clifford-like parallelisms

Pasotti, Stefano;
2019-01-01

Abstract

Given two parallelisms of a projective space we describe a construction, called blending, that yields a (possibly new) parallelism of this space. For a projective double space (ℙ,∥ℓ,∥) over a quaternion skew field we characterise the “Clifford-like” parallelisms, i.e. the blends of the Clifford parallelisms ∥ℓ and ∥, in a geometric and an algebraic way. Finally, we establish necessary and sufficient conditions for the existence of Clifford-like parallelisms that are not Clifford.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/527261
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact