Plasma cells secrete IgM only in the polymeric form: the C-terminal cysteine of the mu heavy chain (Cys575) is responsible for both intracellular retention and assembly of IgM subunits. Polymerization is not quantitative, and part of IgM is degraded intracellularly. Neither chloroquine nor brefeldin A (BFA) inhibits degradation, suggesting that this process occurs in a pre-Golgi compartment. Degradation of IgM assembly intermediates requires Cys575: the monomeric IgMala575 mutant is stable also when endoplasmic reticulum (ER) to Golgi transport is blocked by BFA. Addition of the 20 C-terminal residues of mu to the lysosomal protease cathepsin D is sufficient to induce pre-Golgi retention and degradation of the chimeric protein: the small amounts of molecules which exit from the ER are mostly covalent dimers. By contrast, when retained by the KDEL sequence, cathepsin D is stable in the ER, indicating that retention is not sufficient to cause degradation. Replacing the C-terminal cysteine with serine restores transport through the Golgi. As all chimeric cathepsin D constructs display comparable protease activity in vitro, their different fates are not determined by gross alterations in folding. Thus, also out of its normal context, the mu chain Cys575 plays a crucial role in quality control, mediating assembly, retention and degradation.

Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation

FRA, Annamaria;FINAZZI, Dario;ALBERINI, Cristina Maria
1993-01-01

Abstract

Plasma cells secrete IgM only in the polymeric form: the C-terminal cysteine of the mu heavy chain (Cys575) is responsible for both intracellular retention and assembly of IgM subunits. Polymerization is not quantitative, and part of IgM is degraded intracellularly. Neither chloroquine nor brefeldin A (BFA) inhibits degradation, suggesting that this process occurs in a pre-Golgi compartment. Degradation of IgM assembly intermediates requires Cys575: the monomeric IgMala575 mutant is stable also when endoplasmic reticulum (ER) to Golgi transport is blocked by BFA. Addition of the 20 C-terminal residues of mu to the lysosomal protease cathepsin D is sufficient to induce pre-Golgi retention and degradation of the chimeric protein: the small amounts of molecules which exit from the ER are mostly covalent dimers. By contrast, when retained by the KDEL sequence, cathepsin D is stable in the ER, indicating that retention is not sufficient to cause degradation. Replacing the C-terminal cysteine with serine restores transport through the Golgi. As all chimeric cathepsin D constructs display comparable protease activity in vitro, their different fates are not determined by gross alterations in folding. Thus, also out of its normal context, the mu chain Cys575 plays a crucial role in quality control, mediating assembly, retention and degradation.
File in questo prodotto:
File Dimensione Formato  
EMBO J 1993.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.79 MB
Formato Adobe PDF
1.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/5253
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 132
social impact