The inspiration behind this research is the development of tungsten oxide (WO3) nanowires based, highly sensitive and selective sensing devices directly on the active sensing platform. WO3 one-dimensional nanowires were synthesized via the vapour-phase growth technique. This approach allows the production of well-aligned and uniform nanowires on alumina substrates with their diameter and length in the nanometer range. The morphological and structural properties of nanowires have been investigated by means of the field effect electron microscopy, grazing incidence X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Finally, the fabricated WO3 nanowire sensing devices and their gas sensing performance were investigated in the presence of different oxidizing and reducing gases (especially environmental gases) at different temperatures. The WO3 sensors demonstrate high performance toward H2S and O3 at the optimal working temperatures of 400 and 200 °C, respectively, with the detection limit in the ppb level.

Integration of VLS-Grown WO3 Nanowires into Sensing Devices for the Detection of H2S and O3

Kaur N.
;
Zappa D.;Poli N.;Comini E.
2019-01-01

Abstract

The inspiration behind this research is the development of tungsten oxide (WO3) nanowires based, highly sensitive and selective sensing devices directly on the active sensing platform. WO3 one-dimensional nanowires were synthesized via the vapour-phase growth technique. This approach allows the production of well-aligned and uniform nanowires on alumina substrates with their diameter and length in the nanometer range. The morphological and structural properties of nanowires have been investigated by means of the field effect electron microscopy, grazing incidence X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Finally, the fabricated WO3 nanowire sensing devices and their gas sensing performance were investigated in the presence of different oxidizing and reducing gases (especially environmental gases) at different temperatures. The WO3 sensors demonstrate high performance toward H2S and O3 at the optimal working temperatures of 400 and 200 °C, respectively, with the detection limit in the ppb level.
File in questo prodotto:
File Dimensione Formato  
acsomega.9b01792.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 5.59 MB
Formato Adobe PDF
5.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/525162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 18
social impact