Printing sensors and electronics directly on the objects is very attractive for producing smart devices, but it is still a challenge. Indeed, in some applications, the substrate that supports the printed electronics could be non-planar or the thermal curing of the functional inks could damage temperature-sensitive substrates such as plastics, fabric or paper. In this paper, we propose a new method for manufacturing silver-based strain sensors with arbitrary and custom geometries directly on plastic objects with curvilinear surfaces: (1) the silver lines are deposited by aerosol jet printing, which can print on non-planar or 3D surfaces; (2) photonic sintering quickly cures the deposited layer, avoiding the overheating of the substrate. To validate the manufacturing process, we printed strain gauges with conventional geometry on polyvinyl chloride (PVC) conduits. The entire manufacturing process, included sensor wiring and optional encapsulation, is performed at room temperature, compatible with the plastic surface. At the end of the process, the measured thickness of the printed sensor was 8.72 μm on average, the volume resistivity was evaluated 40 μΩ∙cm, and the thermal coefficient resistance was measured 0.150 %/°C. The average resistance was (71 ± 7) Ω and the gauge factor was found to be 2.42 on average.

Printed Strain Gauge on 3D and Low-Melting Point Plastic Surface by Aerosol Jet Printing and Photonic Curing

Borghetti M.
;
Serpelloni M.;Sardini E.
2019-01-01

Abstract

Printing sensors and electronics directly on the objects is very attractive for producing smart devices, but it is still a challenge. Indeed, in some applications, the substrate that supports the printed electronics could be non-planar or the thermal curing of the functional inks could damage temperature-sensitive substrates such as plastics, fabric or paper. In this paper, we propose a new method for manufacturing silver-based strain sensors with arbitrary and custom geometries directly on plastic objects with curvilinear surfaces: (1) the silver lines are deposited by aerosol jet printing, which can print on non-planar or 3D surfaces; (2) photonic sintering quickly cures the deposited layer, avoiding the overheating of the substrate. To validate the manufacturing process, we printed strain gauges with conventional geometry on polyvinyl chloride (PVC) conduits. The entire manufacturing process, included sensor wiring and optional encapsulation, is performed at room temperature, compatible with the plastic surface. At the end of the process, the measured thickness of the printed sensor was 8.72 μm on average, the volume resistivity was evaluated 40 μΩ∙cm, and the thermal coefficient resistance was measured 0.150 %/°C. The average resistance was (71 ± 7) Ω and the gauge factor was found to be 2.42 on average.
File in questo prodotto:
File Dimensione Formato  
sensors-19-04220.pdf

accesso aperto

Tipologia: Full Text
Licenza: Dominio pubblico
Dimensione 5.56 MB
Formato Adobe PDF
5.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/525154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact