Historically, risk measures have been used for single-period investments, and this has prevented their application by investors willing to reinvest their wealth for more than one period. Due to its intuitive definition and coherent properties, one of the most widely adopted risk measures is expected shortfall (ES). This is defined as a tail expectation; it therefore gives the same weight to all of the losses involved in an average calculation. Here, we propose a modification of ES that does not treat all losses equally. We do this in order to represent the worries surrounding big drops that are typical of multiperiod investors. Our version of ES exploits Kelly’s logarithmic utility function to penalize heavier losses. This enables us to avoid investments that may expose the investor to bad circumstances from which it would be too hard to recover. An analysis of our results using synthetic and real data is offered in order to certify the viability of the proposed method.

From Log-Optimal Portfolio Theory to Risk Measures: Logarithmic Expected Shortfall

ARICI, GIORGIO
Writing – Original Draft Preparation
;
Dalai Marco
Conceptualization
;
Leonardi Riccardo
Supervision
2019-01-01

Abstract

Historically, risk measures have been used for single-period investments, and this has prevented their application by investors willing to reinvest their wealth for more than one period. Due to its intuitive definition and coherent properties, one of the most widely adopted risk measures is expected shortfall (ES). This is defined as a tail expectation; it therefore gives the same weight to all of the losses involved in an average calculation. Here, we propose a modification of ES that does not treat all losses equally. We do this in order to represent the worries surrounding big drops that are typical of multiperiod investors. Our version of ES exploits Kelly’s logarithmic utility function to penalize heavier losses. This enables us to avoid investments that may expose the investor to bad circumstances from which it would be too hard to recover. An analysis of our results using synthetic and real data is offered in order to certify the viability of the proposed method.
File in questo prodotto:
File Dimensione Formato  
ADL_JR-2019.pdf

solo utenti autorizzati

Descrizione: ADL_JR-2019.pdf
Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 598.69 kB
Formato Adobe PDF
598.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/525018
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact