Straw is an organic material with hygroscopical properties. The high capacity it has of storing moisture from the surroundings can furthermore influence the performance and lead to the possible degradation of the material thereof. The aim of this study was to assess the conductance C-value of a complex material such as straw. A climatic chamber was used to study a sample, which reproduces a traditional plastered straw bale wall. Tests were conducted under different boundary conditions, setting constant values for temperatures and relative humidity. The revision of the assessment’s results allowed the calculation of conductance and conductivity values under different conditions. A numerical model was then designed starting from the laboratory data, which was used to characterize material properties. The match between software simulations and laboratory analyses will be a starting point for further tests. Determining the straw conductance C-value is a difficult task to achieve, due to the complexity and the unique properties of the material. In spite of all this, laboratory tests have shown encouraging results, which reflect the great potential of straw as a building material.

Hygrothermal behaviour of straw bale walls: experimental tests and numerical analyses

Alessandra Mesa
;
Alberto Arenghi
2019-01-01

Abstract

Straw is an organic material with hygroscopical properties. The high capacity it has of storing moisture from the surroundings can furthermore influence the performance and lead to the possible degradation of the material thereof. The aim of this study was to assess the conductance C-value of a complex material such as straw. A climatic chamber was used to study a sample, which reproduces a traditional plastered straw bale wall. Tests were conducted under different boundary conditions, setting constant values for temperatures and relative humidity. The revision of the assessment’s results allowed the calculation of conductance and conductivity values under different conditions. A numerical model was then designed starting from the laboratory data, which was used to characterize material properties. The match between software simulations and laboratory analyses will be a starting point for further tests. Determining the straw conductance C-value is a difficult task to achieve, due to the complexity and the unique properties of the material. In spite of all this, laboratory tests have shown encouraging results, which reflect the great potential of straw as a building material.
File in questo prodotto:
File Dimensione Formato  
sbuild190002.pdf

accesso aperto

Tipologia: Full Text
Licenza: Dominio pubblico
Dimensione 2.42 MB
Formato Adobe PDF
2.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/524968
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact