Mercuric chloride (HgCl2) causes acute oxidant renal failure that affects mainly proximal tubules. Schisandrin B (Sch B), an active lignan from the fruit of Schisandra chinensis, has been successfully used to treat gentamicin nephrotoxicity, but its role against mercury damage is still largely unknown. Here we analysed in vivo and in vitro the efficacy of Sch B supplementation against HgCl2 nephrotoxicity, focusing on histopathology, stress proteins, oxidative (cytochrome c oxidase) and nitrosactive markers (eNOS, nNOS). Wistar rats were treated with Sch B (10 mg/kg/day p.o.) or vehicle (olive oil) for 9 days, then coadministered with a single HgCl2 nephrotoxic dose (3.5 mg/kg i.p.) and killed after 24 h. The tubular and mitochondrial damage induced by mercury was limited by Sch B coadministration in vivo. Remarkably, after Sch B and mercury challenge, HSP25, HSP72, GRP75 were reduced in the renal cortex, cytochrome c oxidase increased and eNOS and nNOS were restored in glomeruli. In contrast, NRK-52E proximal tubular cells treated with Sch B 6.25 M plus HgCl2 20 M did not show any amelioration on viability and oxidative stress in respect to HgCl2 20 M alone. Moreover, after Sch B plus mercury in vitro treatment, HSP72 staining persisted while HSP25 further increased. Thus, in our experimental conditions, Sch B cotreatment afforded better protection against mercury poisoning in vivo than in vitro. This discrepancy might be partly attributable to Sch B influence on glomerular perfusion as corroborated by the recovery of vasoactive markers like macular and endothelial nitric oxide isoforms.
Different role of Schisandrin B on mercury-induced renal damage in vivo and in vitro.
STACCHIOTTI, Alessandra;RODELLA, Luigi Fabrizio;REZZANI, Rita
2011-01-01
Abstract
Mercuric chloride (HgCl2) causes acute oxidant renal failure that affects mainly proximal tubules. Schisandrin B (Sch B), an active lignan from the fruit of Schisandra chinensis, has been successfully used to treat gentamicin nephrotoxicity, but its role against mercury damage is still largely unknown. Here we analysed in vivo and in vitro the efficacy of Sch B supplementation against HgCl2 nephrotoxicity, focusing on histopathology, stress proteins, oxidative (cytochrome c oxidase) and nitrosactive markers (eNOS, nNOS). Wistar rats were treated with Sch B (10 mg/kg/day p.o.) or vehicle (olive oil) for 9 days, then coadministered with a single HgCl2 nephrotoxic dose (3.5 mg/kg i.p.) and killed after 24 h. The tubular and mitochondrial damage induced by mercury was limited by Sch B coadministration in vivo. Remarkably, after Sch B and mercury challenge, HSP25, HSP72, GRP75 were reduced in the renal cortex, cytochrome c oxidase increased and eNOS and nNOS were restored in glomeruli. In contrast, NRK-52E proximal tubular cells treated with Sch B 6.25 M plus HgCl2 20 M did not show any amelioration on viability and oxidative stress in respect to HgCl2 20 M alone. Moreover, after Sch B plus mercury in vitro treatment, HSP72 staining persisted while HSP25 further increased. Thus, in our experimental conditions, Sch B cotreatment afforded better protection against mercury poisoning in vivo than in vitro. This discrepancy might be partly attributable to Sch B influence on glomerular perfusion as corroborated by the recovery of vasoactive markers like macular and endothelial nitric oxide isoforms.File | Dimensione | Formato | |
---|---|---|---|
Stacchiotti A v286,p48 Toxicology2011.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.51 MB
Formato
Adobe PDF
|
2.51 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.