Wear and rolling contact fatigue are competing phenomena in railway wheels, as wear tends to shorten or remove surface cracks nucleated by ratcheting. The presence of water at the contact interface can enhance crack propagation leading to fatigue failure. This topic was studied taking advantage of innovative measurement systems developed for assessing the damage in bi-disc rolling contact tests, including a vision system for the acquisition and elaboration of surface images and a machine-learning technique for vibration measurement and analysis. Tests of different total duration with alternated dry and wet contact phases were carried out. The analysis of the collected measurements allowed identifying when crack propagation begins to prevail on wear: this occurred well earlier than the visible emergence of fatigue damage. If short dry and wet contact sessions are alternated, the onset of fluid driven crack propagation is delayed, because initially the dry sessions are not long enough to allow surface cracks to form by ratcheting, and in the subsequent wet session ratcheting is suspended due to low friction. If the alternated dry-wet contact sessions are longer, the onset of fluid driven crack propagation is accelerated, as in the dry sessions ratcheting proceeds more forming longer surface cracks, which are able to propagate in the subsequent wet phase.

A study of wear and rolling contact fatigue on a wheel steel in alternated dry-wet contact aided by innovative measurement systems

Bodini, Ileana;Mazzù, Angelo
;
Petrogalli, Candida;Lancini, Matteo;
2019-01-01

Abstract

Wear and rolling contact fatigue are competing phenomena in railway wheels, as wear tends to shorten or remove surface cracks nucleated by ratcheting. The presence of water at the contact interface can enhance crack propagation leading to fatigue failure. This topic was studied taking advantage of innovative measurement systems developed for assessing the damage in bi-disc rolling contact tests, including a vision system for the acquisition and elaboration of surface images and a machine-learning technique for vibration measurement and analysis. Tests of different total duration with alternated dry and wet contact phases were carried out. The analysis of the collected measurements allowed identifying when crack propagation begins to prevail on wear: this occurred well earlier than the visible emergence of fatigue damage. If short dry and wet contact sessions are alternated, the onset of fluid driven crack propagation is delayed, because initially the dry sessions are not long enough to allow surface cracks to form by ratcheting, and in the subsequent wet session ratcheting is suspended due to low friction. If the alternated dry-wet contact sessions are longer, the onset of fluid driven crack propagation is accelerated, as in the dry sessions ratcheting proceeds more forming longer surface cracks, which are able to propagate in the subsequent wet phase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/524372
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact