This work presents the preparation of nanostructured zinc oxide (ZnO) thin films doped nickel (Ni) with the molar ratios [Ni]/[Zn]=0.5; 1; 1.5; 2% M, using low cost spray pyrolysis method. Different characterization techniques were established, such as: X-ray diffraction that showed the hexagonal structure of the films confirmed by Raman spectroscopy. The grain size variations and the morphology according to doping levels were analyzed by scanning electron microscopy. Optical analysis was carried out, the films are transparent and the band gap energy varies opposing to Urbach energy. From experimental data, we observed that 2% Ni doped ZnO exhibited good characteristics and properties compared to pure ZnO and followed by the other samples. The gas testing confirmed the previous concepts, proving that 2% of nickel added to the basic solution enhanced; response/recovery time, response of the sensor and optimal working temperature. This sample demonstrated better selectivity to acetone detection with high response reaching 90, at 450 degrees C under 100ppm.

Acetone sensor based on Ni doped ZnO nanostructues: growth and sensing capability

Comini E.;
2019-01-01

Abstract

This work presents the preparation of nanostructured zinc oxide (ZnO) thin films doped nickel (Ni) with the molar ratios [Ni]/[Zn]=0.5; 1; 1.5; 2% M, using low cost spray pyrolysis method. Different characterization techniques were established, such as: X-ray diffraction that showed the hexagonal structure of the films confirmed by Raman spectroscopy. The grain size variations and the morphology according to doping levels were analyzed by scanning electron microscopy. Optical analysis was carried out, the films are transparent and the band gap energy varies opposing to Urbach energy. From experimental data, we observed that 2% Ni doped ZnO exhibited good characteristics and properties compared to pure ZnO and followed by the other samples. The gas testing confirmed the previous concepts, proving that 2% of nickel added to the basic solution enhanced; response/recovery time, response of the sensor and optimal working temperature. This sample demonstrated better selectivity to acetone detection with high response reaching 90, at 450 degrees C under 100ppm.
File in questo prodotto:
File Dimensione Formato  
ElKhalidi2019_Article_AcetoneSensorBasedOnNiDopedZnO.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/521138
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 33
social impact