Cannabidiol (CBD) demonstrated short-term neuroprotective effects in the immature brain following hypoxia-ischemia (HI). We examined whether CBD neuroprotection is sustained over a prolonged period. Newborn Wistar rats underwent HI injury (10% oxygen for 120 min after left carotid artery electrocoagulation) and then received vehicle (HV, n = 22) or 1 mg/kg CBD (HC, n = 23). Sham animals were similarly treated (SV, n = 16 and SC, n = 16). The extent of brain damage was determined by magnetic resonance imaging, histological evaluation (neuropathological score, 0-5), magnetic resonance spectroscopy and Western blotting. Several neurobehavioral tests (RotaRod, cylinder rear test[CRT],and novel object recognition[NOR]) were carried out 30 days after HI (P37). CBD modulated brain excitotoxicity, oxidative stress and inflammation seven days after HI. We observed that HI led to long-lasting functional impairment, as observed in all neurobehavioral tests at P37, whereas the results of HC animals were similar to those of sham animals (all p < 0.05 vs. HV). CBD reduced brain infarct volume by 17% (p < 0.05) and lessened the extent of histological damage. No differences were observed between the SV and SC groups in any of the experiments. In conclusion, CBD administration after HI injury to newborn rats led to long-lasting neuroprotection, with the overall effect of promoting greater functional rather than histological recovery. These effects of CBD were not associated with any side effects. These results emphasize the interest in CBD as a neuroprotective agent for neonatal HI.

Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function

Cinquina V.;
2012-01-01

Abstract

Cannabidiol (CBD) demonstrated short-term neuroprotective effects in the immature brain following hypoxia-ischemia (HI). We examined whether CBD neuroprotection is sustained over a prolonged period. Newborn Wistar rats underwent HI injury (10% oxygen for 120 min after left carotid artery electrocoagulation) and then received vehicle (HV, n = 22) or 1 mg/kg CBD (HC, n = 23). Sham animals were similarly treated (SV, n = 16 and SC, n = 16). The extent of brain damage was determined by magnetic resonance imaging, histological evaluation (neuropathological score, 0-5), magnetic resonance spectroscopy and Western blotting. Several neurobehavioral tests (RotaRod, cylinder rear test[CRT],and novel object recognition[NOR]) were carried out 30 days after HI (P37). CBD modulated brain excitotoxicity, oxidative stress and inflammation seven days after HI. We observed that HI led to long-lasting functional impairment, as observed in all neurobehavioral tests at P37, whereas the results of HC animals were similar to those of sham animals (all p < 0.05 vs. HV). CBD reduced brain infarct volume by 17% (p < 0.05) and lessened the extent of histological damage. No differences were observed between the SV and SC groups in any of the experiments. In conclusion, CBD administration after HI injury to newborn rats led to long-lasting neuroprotection, with the overall effect of promoting greater functional rather than histological recovery. These effects of CBD were not associated with any side effects. These results emphasize the interest in CBD as a neuroprotective agent for neonatal HI.
File in questo prodotto:
File Dimensione Formato  
Articolo 1 - Pazos et al., 2012.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 692.23 kB
Formato Adobe PDF
692.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/516948
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 39
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 120
social impact