We characterize the possibility of determining all the maximal elements for a preorder on a topological space by maximizing all the functions in a suitable family of upper semicontinuous order-preserving functions. We discuss the possibility of extending this result to the case of a quasi-preorder (i.e., a reflexive and Suzumura consistent binary relation) on a topological space.
Upper Semicontinuous Representability of Maximal Elements for Nontransitive Preferences
Magalì Zuanon;Gianni Bosi
2019-01-01
Abstract
We characterize the possibility of determining all the maximal elements for a preorder on a topological space by maximizing all the functions in a suitable family of upper semicontinuous order-preserving functions. We discuss the possibility of extending this result to the case of a quasi-preorder (i.e., a reflexive and Suzumura consistent binary relation) on a topological space.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BosiZuanonJOTA2018Revised2.pdf
gestori archivio
Descrizione: Postprint
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
242.2 kB
Formato
Adobe PDF
|
242.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.