Fabrication of synthetic surfaces that reproduce structure and function of biological membranes is an open challenge. This work reports the first example of supported lipid bilayers obtained from extracellular vesicles (EVSLBs). EVSLBs harness and pattern in two dimensions key properties of extracellular vesicle (EV) membranes, which present intermediate complexity between synthetic mimics and natural membranes and innate link to phenotype and function of the originating cells. Silica-supported EVSLBs are formed from nanosized EVs—separated from culture media of prostate cancer model TRAMP-C2 murine cells—following a characteristic crowding-fusion pathway. They display peculiar properties at different length scales, such as 2.5 nm roughness, lipid-raft-like domains, and cushioned patches (with the cushion filled with the native EV biomolecular cargo), which preserve the native EV membrane orientation with the proto-oncogene tyrosine-protein kinase Src (c-Src) accessible to antibody recognition.

Biogenic Supported Lipid Bilayers from Nanosized Extracellular Vesicles

Busatto, Sara;Zendrini, Andrea;Bergese, Paolo
2018-01-01

Abstract

Fabrication of synthetic surfaces that reproduce structure and function of biological membranes is an open challenge. This work reports the first example of supported lipid bilayers obtained from extracellular vesicles (EVSLBs). EVSLBs harness and pattern in two dimensions key properties of extracellular vesicle (EV) membranes, which present intermediate complexity between synthetic mimics and natural membranes and innate link to phenotype and function of the originating cells. Silica-supported EVSLBs are formed from nanosized EVs—separated from culture media of prostate cancer model TRAMP-C2 murine cells—following a characteristic crowding-fusion pathway. They display peculiar properties at different length scales, such as 2.5 nm roughness, lipid-raft-like domains, and cushioned patches (with the cushion filled with the native EV biomolecular cargo), which preserve the native EV membrane orientation with the proto-oncogene tyrosine-protein kinase Src (c-Src) accessible to antibody recognition.
File in questo prodotto:
File Dimensione Formato  
Adv. Biosys. 2018 Montis.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/515025
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact