In this paper, we introduce the concept of spatial and spectral control of nonlinear parametric sidebands in multimode optical fibers by tailoring their linear refractive index profile. In all cases, the pump experiences Kerr self-cleaning, leading to a bell-shaped beam profile. Geometric parametric instability, owing to quasi-phase matching from the dynamic grating generated via the Kerr effect by pump self-imaging, leads to frequency multicasting of beam self-cleaning across a wideband array of sidebands. Our experiments show that introducing a Gaussian dip into the refractive index profile of a graded index fiber permits us to dramatically change the spatial content of spectral sidebands into higher-order modes. This is due to the breaking of the oscillation synchronism among low-order and higher-order modes. Hence, the inter-modal four-wave mixing approach should be used to describe the sideband generation mechanism. Observations agree well with theoretical predictions based on a perturbative analysis and with full numerical solutions of the (3+1)D nonlinear Schrödinger equation.

Refractive index profile tailoring of multimode optical fibers for the spatial and spectral shaping of parametric sidebands

Krupa, Katarzyna
;
Modotto, Daniele;Wabnitz, Stefan
2019-01-01

Abstract

In this paper, we introduce the concept of spatial and spectral control of nonlinear parametric sidebands in multimode optical fibers by tailoring their linear refractive index profile. In all cases, the pump experiences Kerr self-cleaning, leading to a bell-shaped beam profile. Geometric parametric instability, owing to quasi-phase matching from the dynamic grating generated via the Kerr effect by pump self-imaging, leads to frequency multicasting of beam self-cleaning across a wideband array of sidebands. Our experiments show that introducing a Gaussian dip into the refractive index profile of a graded index fiber permits us to dramatically change the spatial content of spectral sidebands into higher-order modes. This is due to the breaking of the oscillation synchronism among low-order and higher-order modes. Hence, the inter-modal four-wave mixing approach should be used to describe the sideband generation mechanism. Observations agree well with theoretical predictions based on a perturbative analysis and with full numerical solutions of the (3+1)D nonlinear Schrödinger equation.
File in questo prodotto:
File Dimensione Formato  
josab19.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 4.52 MB
Formato Adobe PDF
4.52 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/514315
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact