sually, high-pressure die-casting (HPDC) components cannot be heat-treated at high temperature without the occurrence of surface blisters, which are unacceptable for surface finish and may reduce the mechanical properties. In this context, the purpose of the present paper was to analyze the effectiveness of special low solution temperature T6 heat treatment in overcoming this limit for HPDC AlSi 9 Cu 3 alloy. Very low solution temperatures (< 450 °C, followed by 165 °C aging) to prevent the occurrence of blisters were combined with commonly used times (from 1 to 16 h) ensuring the feasibility of industrial application. Treatments were conducted on samples extracted from actual castings to evaluate the typical defects encountered in common production. Properties were analyzed by means of visual inspection, microstructural observations, image analysis, hardness, tensile tests and fractography. The results showed that it is possible to use solubilization temperatures below 450 °C for several hours in a T6 treatment to give strengthening without relevant blistering in AlSi 9 Cu 3 alloy. The optimum match of properties was provided by a solution treatment at 430 °C for 4 h followed by an aging at 165 °C for 8 h, which gave a yield increase of ~ 50 MPa, an increase in ductility and the best Quality Index value.
Low Solution Temperature Heat Treatment of AlSi 9 Cu 3 (Fe) High-Pressure Die-Casting Actual Automotive Components
Cecchel, Silvia;Panvini, Andrea;Cornacchia, Giovanna
2018-01-01
Abstract
sually, high-pressure die-casting (HPDC) components cannot be heat-treated at high temperature without the occurrence of surface blisters, which are unacceptable for surface finish and may reduce the mechanical properties. In this context, the purpose of the present paper was to analyze the effectiveness of special low solution temperature T6 heat treatment in overcoming this limit for HPDC AlSi 9 Cu 3 alloy. Very low solution temperatures (< 450 °C, followed by 165 °C aging) to prevent the occurrence of blisters were combined with commonly used times (from 1 to 16 h) ensuring the feasibility of industrial application. Treatments were conducted on samples extracted from actual castings to evaluate the typical defects encountered in common production. Properties were analyzed by means of visual inspection, microstructural observations, image analysis, hardness, tensile tests and fractography. The results showed that it is possible to use solubilization temperatures below 450 °C for several hours in a T6 treatment to give strengthening without relevant blistering in AlSi 9 Cu 3 alloy. The optimum match of properties was provided by a solution treatment at 430 °C for 4 h followed by an aging at 165 °C for 8 h, which gave a yield increase of ~ 50 MPa, an increase in ductility and the best Quality Index value.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.