Rhabdomyosarcoma (RMS) is a pediatric soft tissue tumor classified in two major subtypes namely embryonal and alveolar, which have distinctive histopathological and genetic signatures and worse outcomes in the presence of metastases. Here, in order to evaluate the role of Caveolin-1 (Cav-1) in embryonal RMS dissemination, we employed an experimental in vivo metastasis assay using immunodeficient NOD/SCID mice. We found that the intravenous injection of human RD cells engineered for Cav-1 overexpression promoted the formation of lung metastases compared to parental cells. The arisen metastases were isolated and cultured in vitro to establish two derivative lines that showed greater metastatic capacity, as detected by performing in vivo metastasis and tumor spheroid invasion assays. Compared to parental cells, all metastatic lines were characterized by an increase in cell proliferation, migration and invasiveness that were downregulated by synthetic inhibition of Erk pathway. The metastatic cells showed a marked cell apoptosis induced by nutrient deprivation and consistent loss of differentiation characterized by depletion of MyoD and Myogenin factors. Furthermore, they showed marked changes in cell size, a re-organization of the three-dimensional cytoskeleton characterized by an increased actin stress fiber content, and increased adhesion and angiogenic properties. Collectively, these data provide new insights into Cav-1-driven metastatic process of embryonal RMS through cooperation of the Erk signaling pathway. Furthermore, our derivative metastatic lines represent useful tools for identifying genes or molecular pathways that regulate the metastatic progression of embryonal RMS.

Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation

Silvia Codenotti;Fiorella Faggi;Roberto Ronca;Paola Chiodelli;Elisabetta Grillo;Alessandro Fanzani
Supervision
2019-01-01

Abstract

Rhabdomyosarcoma (RMS) is a pediatric soft tissue tumor classified in two major subtypes namely embryonal and alveolar, which have distinctive histopathological and genetic signatures and worse outcomes in the presence of metastases. Here, in order to evaluate the role of Caveolin-1 (Cav-1) in embryonal RMS dissemination, we employed an experimental in vivo metastasis assay using immunodeficient NOD/SCID mice. We found that the intravenous injection of human RD cells engineered for Cav-1 overexpression promoted the formation of lung metastases compared to parental cells. The arisen metastases were isolated and cultured in vitro to establish two derivative lines that showed greater metastatic capacity, as detected by performing in vivo metastasis and tumor spheroid invasion assays. Compared to parental cells, all metastatic lines were characterized by an increase in cell proliferation, migration and invasiveness that were downregulated by synthetic inhibition of Erk pathway. The metastatic cells showed a marked cell apoptosis induced by nutrient deprivation and consistent loss of differentiation characterized by depletion of MyoD and Myogenin factors. Furthermore, they showed marked changes in cell size, a re-organization of the three-dimensional cytoskeleton characterized by an increased actin stress fiber content, and increased adhesion and angiogenic properties. Collectively, these data provide new insights into Cav-1-driven metastatic process of embryonal RMS through cooperation of the Erk signaling pathway. Furthermore, our derivative metastatic lines represent useful tools for identifying genes or molecular pathways that regulate the metastatic progression of embryonal RMS.
File in questo prodotto:
File Dimensione Formato  
Codenotti S, Cancer Letters 2019.pdf

solo utenti autorizzati

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/513946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact