Big Data Analytics help team sports’ managers in their decisions by processing a number of different kind of data. With the advent of Information Technologies, collecting, processing and storing big amounts of sport data in different form became possible. A problem that often arises when using sport data regards the need for automatic data cleaning procedures. In this paper we develop a data cleaning procedure for basketball which is based on players’ trajectories. Starting from a data matrix that tracks the movements of the players on the court at different moments in the game, we propose an algorithm to automatically drop inactive moments making use of available sensor data. The algorithm also divides the game into sorted actions and labels them as offensive or defensive. The algorithm’s parameters are validated using proper robustness checks.

Filtering procedures for sensor data in basketball

Rodolfo Metulini
2017-01-01

Abstract

Big Data Analytics help team sports’ managers in their decisions by processing a number of different kind of data. With the advent of Information Technologies, collecting, processing and storing big amounts of sport data in different form became possible. A problem that often arises when using sport data regards the need for automatic data cleaning procedures. In this paper we develop a data cleaning procedure for basketball which is based on players’ trajectories. Starting from a data matrix that tracks the movements of the players on the court at different moments in the game, we propose an algorithm to automatically drop inactive moments making use of available sensor data. The algorithm also divides the game into sorted actions and labels them as offensive or defensive. The algorithm’s parameters are validated using proper robustness checks.
File in questo prodotto:
File Dimensione Formato  
22. metulini 2017 S&A.pdf

gestori archivio

Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 851.02 kB
Formato Adobe PDF
851.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/510606
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact