Rate-Controlled Constrained-Equilibrium (RCCE) modeling of complex chemical kinetics provides acceptable accuracies with much fewer differential equations than for the fully Detailed Kinetic Model (DKM). Since its introduction by James C. Keck, a drawback of the RCCE scheme has been the absence of an automatable, systematic procedure to identify the constraints that most effectively warrant a desired level of approximation for a given range of initial, boundary, and thermodynamic conditions. An optimal constraint identification has been recently proposed. Given a DKM with S species, E elements, and R reactions, the procedure starts by running a probe DKM simulation to compute an S-vector that we call overall degree of disequilibrium (ODoD) because its scalar product with the S-vector formed by the stoichiometric coefficients of any reaction yields its degree of disequilibrium (DoD). The ODoD vector evolves in the same (S-E)-dimensional stoichiometric subspace spanned by the R stoichiometric S-vectors. Next we construct the rank-(S-E) matrix of ODoD traces obtained from the probe DKM numerical simulation and compute its singular value decomposition (SVD). By retaining only the first C largest singular values of the SVD and setting to zero all the others we obtain the best rank-C approximation of the matrix of ODoD traces whereby its columns span a C-dimensional subspace of the stoichiometric subspace. This in turn yields the best approximation of the evolution of the ODoD vector in terms of only C parameters that we call the constraint potentials. The resulting order-C RCCE approximate model reduces the number of independent differential equations related to species, mass, and energy balances from S+2 to C+E+2, with substantial computational savings when C ≪ S-E.

Systematic constraint selection strategy for rate-controlled constrained-equilibrium modeling of complex nonequilibrium chemical kinetics

G. P. Beretta
;
2018-01-01

Abstract

Rate-Controlled Constrained-Equilibrium (RCCE) modeling of complex chemical kinetics provides acceptable accuracies with much fewer differential equations than for the fully Detailed Kinetic Model (DKM). Since its introduction by James C. Keck, a drawback of the RCCE scheme has been the absence of an automatable, systematic procedure to identify the constraints that most effectively warrant a desired level of approximation for a given range of initial, boundary, and thermodynamic conditions. An optimal constraint identification has been recently proposed. Given a DKM with S species, E elements, and R reactions, the procedure starts by running a probe DKM simulation to compute an S-vector that we call overall degree of disequilibrium (ODoD) because its scalar product with the S-vector formed by the stoichiometric coefficients of any reaction yields its degree of disequilibrium (DoD). The ODoD vector evolves in the same (S-E)-dimensional stoichiometric subspace spanned by the R stoichiometric S-vectors. Next we construct the rank-(S-E) matrix of ODoD traces obtained from the probe DKM numerical simulation and compute its singular value decomposition (SVD). By retaining only the first C largest singular values of the SVD and setting to zero all the others we obtain the best rank-C approximation of the matrix of ODoD traces whereby its columns span a C-dimensional subspace of the stoichiometric subspace. This in turn yields the best approximation of the evolution of the ODoD vector in terms of only C parameters that we call the constraint potentials. The resulting order-C RCCE approximate model reduces the number of independent differential equations related to species, mass, and energy balances from S+2 to C+E+2, with substantial computational savings when C ≪ S-E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/506312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact