One of the most important alterations that occur in man and experimental animals during spaceflight concerns the skeletal system, and entails important bone loss and degradation of mechanical properties. In the present work we investigate ex vivo the long-term effects of weightlessness (simulated microgravity) on bone tissue, by comparing the mesoscale structural properties of weight-bearing rat tibial epiphyseal cancellous structures of healthy animals (ground controls) with those of identical bone explants maintained ex vivo in the Rotary Cell Culture System (RCCS) bioreactor, used to model, on ground, microgravity conditions. Bone structures were reconstructed by synchrotron radiation micro-CT, morphometric analyses were performed, and the apparent elastic properties were computed by means of a numerical model based on the Cell Method. Two novel results were achieved in this study. First of all, the skeletal modifications found in bone explants after 3–4 weeks of culture in the RCCS bioreactor are in perfect agreement with those observed in vivo after a long-term spaceflight (Mice Drawer System mission, 2009), thus confirming the relevance of our model in reproducing the effects of microgravity on whole bone tissue. Secondly, but not less importantly, our study points out that the degradation in bone structural performance (apparent mechanical properties) must be considered in order to achieve an accurate representation of trabecular bone modifications not only in osteoporotic bone diseases, but also in the microgravity-induced bone alterations. In conclusion, our findings, by proving that the association of the RCCS bioreactor-based culture method, used to model microgravity conditions, with numerical simulations able to quantify bone quality, represents the first ground-based reliable model for investigating, ex vivo, some of the spaceflight effects on bone tissue, and open new perspectives to basic research and clinical applications.

A mesoscale study of the degradation of bone structural properties in modeled microgravity conditions

Steimberg N.;Mazzoleni G
2015-01-01

Abstract

One of the most important alterations that occur in man and experimental animals during spaceflight concerns the skeletal system, and entails important bone loss and degradation of mechanical properties. In the present work we investigate ex vivo the long-term effects of weightlessness (simulated microgravity) on bone tissue, by comparing the mesoscale structural properties of weight-bearing rat tibial epiphyseal cancellous structures of healthy animals (ground controls) with those of identical bone explants maintained ex vivo in the Rotary Cell Culture System (RCCS) bioreactor, used to model, on ground, microgravity conditions. Bone structures were reconstructed by synchrotron radiation micro-CT, morphometric analyses were performed, and the apparent elastic properties were computed by means of a numerical model based on the Cell Method. Two novel results were achieved in this study. First of all, the skeletal modifications found in bone explants after 3–4 weeks of culture in the RCCS bioreactor are in perfect agreement with those observed in vivo after a long-term spaceflight (Mice Drawer System mission, 2009), thus confirming the relevance of our model in reproducing the effects of microgravity on whole bone tissue. Secondly, but not less importantly, our study points out that the degradation in bone structural performance (apparent mechanical properties) must be considered in order to achieve an accurate representation of trabecular bone modifications not only in osteoporotic bone diseases, but also in the microgravity-induced bone alterations. In conclusion, our findings, by proving that the association of the RCCS bioreactor-based culture method, used to model microgravity conditions, with numerical simulations able to quantify bone quality, represents the first ground-based reliable model for investigating, ex vivo, some of the spaceflight effects on bone tissue, and open new perspectives to basic research and clinical applications.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S175161611500003X-main.pdf

gestori archivio

Descrizione: articolo principale
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/505820
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 10
social impact