During an initial field survey in 2012, we observed an unexpected asymmetry of dissolved oxygen distribution between the western and eastern side in northern Lake Iseo. Motivated by this apparent anomaly, we conducted a detailed field investigation, and we used a physical model of the northern part of the lake to understand the in- fluences that might affect the distribution of material in the northern section of the lake. These investigations sug- gested that the Earth's rotation has significant influence on the inflow of the lake's two main tributaries. In order to further crosscheck the validity of these results, we conducted a careful analysis at a synoptic scale using images acquired during thermally unstratified periods by Landsat-8 and Sentinel-2 satellites. We retrieved and post- processed a large set of images, providing conclusive evidence of the role exerted by the Earth's rotation on pol- lutant transport in Lake Iseo and of the greater environmental vulnerability of the north-west shore of this lake, where important settlements are located. Our study confirms the necessity for three-dimensional hydrodynamic models including Coriolis effect in order to effectively predict local impacts of inflows on nearshore water quality of medium-sized elongated lakes of similar scale to Lake Iseo.
Evidence from field measurements and satellite imaging of impact of Earth rotation on Lake Iseo chemistry
Marco Pilotti
;Giulia Valerio
;CHAPRA, Steven Christopher
2018-01-01
Abstract
During an initial field survey in 2012, we observed an unexpected asymmetry of dissolved oxygen distribution between the western and eastern side in northern Lake Iseo. Motivated by this apparent anomaly, we conducted a detailed field investigation, and we used a physical model of the northern part of the lake to understand the in- fluences that might affect the distribution of material in the northern section of the lake. These investigations sug- gested that the Earth's rotation has significant influence on the inflow of the lake's two main tributaries. In order to further crosscheck the validity of these results, we conducted a careful analysis at a synoptic scale using images acquired during thermally unstratified periods by Landsat-8 and Sentinel-2 satellites. We retrieved and post- processed a large set of images, providing conclusive evidence of the role exerted by the Earth's rotation on pol- lutant transport in Lake Iseo and of the greater environmental vulnerability of the north-west shore of this lake, where important settlements are located. Our study confirms the necessity for three-dimensional hydrodynamic models including Coriolis effect in order to effectively predict local impacts of inflows on nearshore water quality of medium-sized elongated lakes of similar scale to Lake Iseo.File | Dimensione | Formato | |
---|---|---|---|
JournalGreatLakesResearch_2018.pdf
accesso aperto
Tipologia:
Full Text
Licenza:
Dominio pubblico
Dimensione
4.59 MB
Formato
Adobe PDF
|
4.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.