Background: Frontotemporal Dementia (FTD) is a neurodegenerative disorder which asymmetrically affects the frontotemporal lobe, characterized by behavioural abnormalities, language impairment, and deficits of executive functions. Genetic studies identified mutations causing the disease, namely Microtubule Associated Protein Tau (MAPT), Granulin (GRN) and chromosome 9 open reading frame 72 (C9orf72) mutations, which contributed to elucidate the molecular pathways involved in brain depositions of either Tau or TAR DNA-binding protein 43 (TDP43) inclusions. However, in the majority of sporadic FTD patients, the mechanisms triggering Tau or TDP43 protein deposition are still to be uncovered. Objective: We aimed to present an extensive evaluation of literature data on immune homeostasis in FTD, in order to provide potentially evidence-based approaches for a disease still orphan of any treatment. Methods: A structured search of bibliographic databases from peer-reviewed literature was pursued focusing on autoimmunity in the brain and FTD. Results: One-hundred-fourteen papers were included in this review. The majority of studies (32) were represented by extensive literature revision on immunity, central nervous system (CNS) and autoimmunity; neuroimaging papers (11) in autoimmune diseases were evaluated, and immunomodulatory approaches (25) were revised. Six papers were found specifically related to FTD and autoimmune hypothesis, the other papers referring to current state of art on FTD. Conclusion: Overall this review contribute to expand the knowledge of a possible immune hypothesis in FTD, suggesting therapeutic perspectives in autoimmune related neurodegeneration, to reduce or revert the disease.

Autoimmunity and frontotemporal dementia

Cristillo V.;Gazzina S.;Benussi A.;Padovani A.;Borroni B.
2018-01-01

Abstract

Background: Frontotemporal Dementia (FTD) is a neurodegenerative disorder which asymmetrically affects the frontotemporal lobe, characterized by behavioural abnormalities, language impairment, and deficits of executive functions. Genetic studies identified mutations causing the disease, namely Microtubule Associated Protein Tau (MAPT), Granulin (GRN) and chromosome 9 open reading frame 72 (C9orf72) mutations, which contributed to elucidate the molecular pathways involved in brain depositions of either Tau or TAR DNA-binding protein 43 (TDP43) inclusions. However, in the majority of sporadic FTD patients, the mechanisms triggering Tau or TDP43 protein deposition are still to be uncovered. Objective: We aimed to present an extensive evaluation of literature data on immune homeostasis in FTD, in order to provide potentially evidence-based approaches for a disease still orphan of any treatment. Methods: A structured search of bibliographic databases from peer-reviewed literature was pursued focusing on autoimmunity in the brain and FTD. Results: One-hundred-fourteen papers were included in this review. The majority of studies (32) were represented by extensive literature revision on immunity, central nervous system (CNS) and autoimmunity; neuroimaging papers (11) in autoimmune diseases were evaluated, and immunomodulatory approaches (25) were revised. Six papers were found specifically related to FTD and autoimmune hypothesis, the other papers referring to current state of art on FTD. Conclusion: Overall this review contribute to expand the knowledge of a possible immune hypothesis in FTD, suggesting therapeutic perspectives in autoimmune related neurodegeneration, to reduce or revert the disease.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/501929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact