A new concept of a reconfigurable smart catalyst was developed from the synergistic combination of polycarbonate/carbon nanotube bimorph photoactuators and TiO2. The addition of TiO2 provides the photoactuators with photocatalytic activity and superior opto-mechanical properties, making phototropic actuation fast, reversible and responsive to Vis-NIR light sources. These composites were tested in the wireless, light-driven and spatially controlled remote triggering of different chemical reactions, including local explosions and photocatalytic polymerizations. The same materials were also investigated as efficient opto-mechanical shutters for the light-selective inhibition or activation of specific reactions, such as the photo-induced degradation of organic dyes. These results suggest that the integration of photocatalysts with soft photoactuators can open intriguing opportunities for chemistry and soft robotics.

"The phactalysts": Carbon nanotube/TiO2composites as phototropic actuators for wireless remote triggering of chemical reactions and catalysis

Vassalini, Irene;Alessandri, Ivano
2017-01-01

Abstract

A new concept of a reconfigurable smart catalyst was developed from the synergistic combination of polycarbonate/carbon nanotube bimorph photoactuators and TiO2. The addition of TiO2 provides the photoactuators with photocatalytic activity and superior opto-mechanical properties, making phototropic actuation fast, reversible and responsive to Vis-NIR light sources. These composites were tested in the wireless, light-driven and spatially controlled remote triggering of different chemical reactions, including local explosions and photocatalytic polymerizations. The same materials were also investigated as efficient opto-mechanical shutters for the light-selective inhibition or activation of specific reactions, such as the photo-induced degradation of organic dyes. These results suggest that the integration of photocatalysts with soft photoactuators can open intriguing opportunities for chemistry and soft robotics.
File in questo prodotto:
File Dimensione Formato  
the phactalyst.pdf

solo utenti autorizzati

Descrizione: articolo principale
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/501706
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 21
social impact