Abstract Hair highly characterises human appearance. Hair detection in images is useful for many applications, such as face and gender recognition, video surveillance, and hair modelling. We tackle the problem of hair analysis (detection, segmentation, and hairstyle classification) from unconstrained view by relying only on textures, without a-priori information on head shape and location, nor using body-part classifiers. We first build a hair probability map by classifying overlapping patches described by features extracted from a CNN, using Random Forest. Then modelling hair (resp. non-hair) from high (resp. low) probability regions, we segment at pixel level uncertain areas by using LTP features and SVM. For the experiments we extend Figaro, an image database for hair detection to Figaro1k, a new version with more than 1000 manually annotated images. Achieved segmentation accuracy (around 90%) is superior to known state-of-the-art. Images are eventually classified into hairstyle classes: straight, wavy, curly, kinky, braids, dreadlocks, and short.

Hair detection, segmentation, and hairstyle classification in the wild

Umar Riaz Muhammad;Michele Svanera
;
Riccardo Leonardi;Sergio Benini
Writing – Original Draft Preparation
2018-01-01

Abstract

Abstract Hair highly characterises human appearance. Hair detection in images is useful for many applications, such as face and gender recognition, video surveillance, and hair modelling. We tackle the problem of hair analysis (detection, segmentation, and hairstyle classification) from unconstrained view by relying only on textures, without a-priori information on head shape and location, nor using body-part classifiers. We first build a hair probability map by classifying overlapping patches described by features extracted from a CNN, using Random Forest. Then modelling hair (resp. non-hair) from high (resp. low) probability regions, we segment at pixel level uncertain areas by using LTP features and SVM. For the experiments we extend Figaro, an image database for hair detection to Figaro1k, a new version with more than 1000 manually annotated images. Achieved segmentation accuracy (around 90%) is superior to known state-of-the-art. Images are eventually classified into hairstyle classes: straight, wavy, curly, kinky, braids, dreadlocks, and short.
File in questo prodotto:
File Dimensione Formato  
MSL18-1-s2.0-S0262885618300143-main.pdf

solo utenti autorizzati

Descrizione: full text
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 5.24 MB
Formato Adobe PDF
5.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/501620
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 18
social impact