We introduce a (possibly infinite) collection of mutually dual nonconvex optimization problems, which share a common optimal value, and give a characterization of their global optimal solutions. As immediate consequences of our general multiduality principle, we obtain Toland–Singer duality theorem as well as an analogous result involving generalized perspective functions. Based on our duality theory, we propose an extension of an existing algorithm for the minimization of d.c. functions, which exploits Toland–Singer duality, to a more general class of nonconvex optimization problems.
A General Nonconvex Multiduality Principle
Rossana RiccardiMembro del Collaboration Group
2018-01-01
Abstract
We introduce a (possibly infinite) collection of mutually dual nonconvex optimization problems, which share a common optimal value, and give a characterization of their global optimal solutions. As immediate consequences of our general multiduality principle, we obtain Toland–Singer duality theorem as well as an analogous result involving generalized perspective functions. Based on our duality theory, we propose an extension of an existing algorithm for the minimization of d.c. functions, which exploits Toland–Singer duality, to a more general class of nonconvex optimization problems.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.