Evidence indicates altered neurogenesis in neurodegenerative diseases associated with inflammation, including Alzheimer's disease (AD). Neuroinflammation and its propagation have a critical role in the degeneration of hippocampal neurons, cognitive impairment, and altered neurogenesis. Particularly, tumor necrosis factor (TNF)-α plays a central role in initiating and regulating the cytokine cascade during an inflammatory response and is up-regulated in brain of AD patients. In this study, we investigated the effects of a novel thalidomide-based TNF-α lowering drug, 3,6'-dithiothalidomide, on hippocampal progenitor cell proliferation, neurogenesis and, memory tasks after intracerebroventricular injection of β-amyloid (Aß)(1-42) peptide. Seven days after Aβ(1-42) injection, a significant proliferation of hippocampal progenitor cells and memory impairment were evident. Four weeks after Aβ(1-42) peptide injection, elevated numbers of surviving 5-bromo-2'-deoxyuridine cells and newly formed neurons were detected. Treatment with 3,6'-dithiothalidomide attenuated these Aβ(1-42) provoked effects. Our data indicate that although treatment with 3,6'-dithiothalidomide in part attenuated the increase in hippocampal neurogenesis caused by Aβ(1-42) -induced neuroinflammation, the drug prevented memory deficits associated with increased numbers of activated microglial cells and inflammatory response. Therefore, 3,6'-dithiothalidomide treatment likely reduced neuronal tissue damage induced by neuroinflammation following Aβ(1-42) injection. Understanding the modulation of neurogenesis, and its relationship with memory function could open new therapeutic interventions for AD and other neurodegenerative disorders with an inflammatory component.
3,6'-Dithiothalidomide, a new TNF-α synthesis inhibitor, attenuates the effect of Aβ1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit
Russo, Isabella;Caracciolo, Luca;Barlati, Sergio;
2012-01-01
Abstract
Evidence indicates altered neurogenesis in neurodegenerative diseases associated with inflammation, including Alzheimer's disease (AD). Neuroinflammation and its propagation have a critical role in the degeneration of hippocampal neurons, cognitive impairment, and altered neurogenesis. Particularly, tumor necrosis factor (TNF)-α plays a central role in initiating and regulating the cytokine cascade during an inflammatory response and is up-regulated in brain of AD patients. In this study, we investigated the effects of a novel thalidomide-based TNF-α lowering drug, 3,6'-dithiothalidomide, on hippocampal progenitor cell proliferation, neurogenesis and, memory tasks after intracerebroventricular injection of β-amyloid (Aß)(1-42) peptide. Seven days after Aβ(1-42) injection, a significant proliferation of hippocampal progenitor cells and memory impairment were evident. Four weeks after Aβ(1-42) peptide injection, elevated numbers of surviving 5-bromo-2'-deoxyuridine cells and newly formed neurons were detected. Treatment with 3,6'-dithiothalidomide attenuated these Aβ(1-42) provoked effects. Our data indicate that although treatment with 3,6'-dithiothalidomide in part attenuated the increase in hippocampal neurogenesis caused by Aβ(1-42) -induced neuroinflammation, the drug prevented memory deficits associated with increased numbers of activated microglial cells and inflammatory response. Therefore, 3,6'-dithiothalidomide treatment likely reduced neuronal tissue damage induced by neuroinflammation following Aβ(1-42) injection. Understanding the modulation of neurogenesis, and its relationship with memory function could open new therapeutic interventions for AD and other neurodegenerative disorders with an inflammatory component.File | Dimensione | Formato | |
---|---|---|---|
3,6'-Dithiothalidomide, a new TNF-α synthesis inhibitor, attenuates the effect of Aβ1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit..pdf
accesso aperto
Tipologia:
Full Text
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
813.83 kB
Formato
Adobe PDF
|
813.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.