Evidence indicates altered neurogenesis in neurodegenerative diseases associated with inflammation, including Alzheimer's disease (AD). Neuroinflammation and its propagation have a critical role in the degeneration of hippocampal neurons, cognitive impairment, and altered neurogenesis. Particularly, tumor necrosis factor (TNF)-α plays a central role in initiating and regulating the cytokine cascade during an inflammatory response and is up-regulated in brain of AD patients. In this study, we investigated the effects of a novel thalidomide-based TNF-α lowering drug, 3,6'-dithiothalidomide, on hippocampal progenitor cell proliferation, neurogenesis and, memory tasks after intracerebroventricular injection of β-amyloid (Aß)(1-42) peptide. Seven days after Aβ(1-42) injection, a significant proliferation of hippocampal progenitor cells and memory impairment were evident. Four weeks after Aβ(1-42) peptide injection, elevated numbers of surviving 5-bromo-2'-deoxyuridine cells and newly formed neurons were detected. Treatment with 3,6'-dithiothalidomide attenuated these Aβ(1-42) provoked effects. Our data indicate that although treatment with 3,6'-dithiothalidomide in part attenuated the increase in hippocampal neurogenesis caused by Aβ(1-42) -induced neuroinflammation, the drug prevented memory deficits associated with increased numbers of activated microglial cells and inflammatory response. Therefore, 3,6'-dithiothalidomide treatment likely reduced neuronal tissue damage induced by neuroinflammation following Aβ(1-42) injection. Understanding the modulation of neurogenesis, and its relationship with memory function could open new therapeutic interventions for AD and other neurodegenerative disorders with an inflammatory component.

3,6'-Dithiothalidomide, a new TNF-α synthesis inhibitor, attenuates the effect of Aβ1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit

Russo, Isabella;Caracciolo, Luca;Barlati, Sergio;
2012-01-01

Abstract

Evidence indicates altered neurogenesis in neurodegenerative diseases associated with inflammation, including Alzheimer's disease (AD). Neuroinflammation and its propagation have a critical role in the degeneration of hippocampal neurons, cognitive impairment, and altered neurogenesis. Particularly, tumor necrosis factor (TNF)-α plays a central role in initiating and regulating the cytokine cascade during an inflammatory response and is up-regulated in brain of AD patients. In this study, we investigated the effects of a novel thalidomide-based TNF-α lowering drug, 3,6'-dithiothalidomide, on hippocampal progenitor cell proliferation, neurogenesis and, memory tasks after intracerebroventricular injection of β-amyloid (Aß)(1-42) peptide. Seven days after Aβ(1-42) injection, a significant proliferation of hippocampal progenitor cells and memory impairment were evident. Four weeks after Aβ(1-42) peptide injection, elevated numbers of surviving 5-bromo-2'-deoxyuridine cells and newly formed neurons were detected. Treatment with 3,6'-dithiothalidomide attenuated these Aβ(1-42) provoked effects. Our data indicate that although treatment with 3,6'-dithiothalidomide in part attenuated the increase in hippocampal neurogenesis caused by Aβ(1-42) -induced neuroinflammation, the drug prevented memory deficits associated with increased numbers of activated microglial cells and inflammatory response. Therefore, 3,6'-dithiothalidomide treatment likely reduced neuronal tissue damage induced by neuroinflammation following Aβ(1-42) injection. Understanding the modulation of neurogenesis, and its relationship with memory function could open new therapeutic interventions for AD and other neurodegenerative disorders with an inflammatory component.
File in questo prodotto:
File Dimensione Formato  
3,6'-Dithiothalidomide, a new TNF-α synthesis inhibitor, attenuates the effect of Aβ1-42 intracerebroventricular injection on hippocampal neurogenesis and memory deficit..pdf

accesso aperto

Tipologia: Full Text
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 813.83 kB
Formato Adobe PDF
813.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/500712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 60
social impact