We present an a posteriori estimator of the error in the L2-norm for the numerical approximation of the Maxwell’s eigenvalue problem by means of N´ed´elec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a superconvergence result between the L2-orthogonal projection of the exact eigenfunction onto the curl of the Nédélec finite element space and the eigenfunction approximation. Reliability of the a posteriori error estimator is proved up to higher order terms, and local efficiency of the error indicators is shown by using a standard bubble functions technique. The behavior of the a posteriori error estimator is illustrated on a numerical test.

Residual-based a posteriori error estimation for the Maxwell's eigenvalue problem

Gastaldi, Lucia;
2017-01-01

Abstract

We present an a posteriori estimator of the error in the L2-norm for the numerical approximation of the Maxwell’s eigenvalue problem by means of N´ed´elec finite elements. Our analysis is based on a Helmholtz decomposition of the error and on a superconvergence result between the L2-orthogonal projection of the exact eigenfunction onto the curl of the Nédélec finite element space and the eigenfunction approximation. Reliability of the a posteriori error estimator is proved up to higher order terms, and local efficiency of the error indicators is shown by using a standard bubble functions technique. The behavior of the a posteriori error estimator is illustrated on a numerical test.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/499447
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact