In this paper we determine the minimum distance of orthogonal line-Grassmann codes for q even. The case q odd was solved in "I. Cardinali, L. Giuzzi, K. Kaipa, A. Pasini, Line Polar Grassmann Codes of Orthogonal Type, J. Pure Applied Algebra (doi:10.1016/j.jpaa.2015.10.007 )" We also show that for q even all minimum weight codewords are equivalent and that symplectic line-Grassmann codes are proper subcodes of codimension 2n of the orthogonal ones.

Minimum distance of Orthogonal Line-Grassmann Codes in even characteristic

Giuzzi, Luca
2018-01-01

Abstract

In this paper we determine the minimum distance of orthogonal line-Grassmann codes for q even. The case q odd was solved in "I. Cardinali, L. Giuzzi, K. Kaipa, A. Pasini, Line Polar Grassmann Codes of Orthogonal Type, J. Pure Applied Algebra (doi:10.1016/j.jpaa.2015.10.007 )" We also show that for q even all minimum weight codewords are equivalent and that symplectic line-Grassmann codes are proper subcodes of codimension 2n of the orthogonal ones.
File in questo prodotto:
File Dimensione Formato  
EvenOrthogonal-final.pdf

accesso aperto

Descrizione: Preprint
Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 305.57 kB
Formato Adobe PDF
305.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/498371
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact