In this paper we determine the minimum distance of orthogonal line-Grassmann codes for q even. The case q odd was solved in "I. Cardinali, L. Giuzzi, K. Kaipa, A. Pasini, Line Polar Grassmann Codes of Orthogonal Type, J. Pure Applied Algebra (doi:10.1016/j.jpaa.2015.10.007 )" We also show that for q even all minimum weight codewords are equivalent and that symplectic line-Grassmann codes are proper subcodes of codimension 2n of the orthogonal ones.
Minimum distance of Orthogonal Line-Grassmann Codes in even characteristic
Giuzzi, Luca
2018-01-01
Abstract
In this paper we determine the minimum distance of orthogonal line-Grassmann codes for q even. The case q odd was solved in "I. Cardinali, L. Giuzzi, K. Kaipa, A. Pasini, Line Polar Grassmann Codes of Orthogonal Type, J. Pure Applied Algebra (doi:10.1016/j.jpaa.2015.10.007 )" We also show that for q even all minimum weight codewords are equivalent and that symplectic line-Grassmann codes are proper subcodes of codimension 2n of the orthogonal ones.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
EvenOrthogonal-final.pdf
accesso aperto
Descrizione: Preprint
Tipologia:
Documento in Pre-print
Licenza:
DRM non definito
Dimensione
305.57 kB
Formato
Adobe PDF
|
305.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.