The sphere packing bound, in the form given by Shannon, Gallager, and Berlekamp, was recently extended to classical-quantum channels, and it was shown that this creates a natural setting for combining probabilistic approaches with some combinatorial ones such as the Lovász theta function. In this paper, we extend the study to the case of constant-composition codes. We first extend the sphere packing bound for classical-quantum channels to this case, and we then show that the obtained result is related to a variation of the Lovász theta function studied by Marton. We then propose a further extension to the case of varying channels and codewords with a constant conditional composition given a particular sequence. This extension is finally applied to auxiliary channels to deduce a bound, which is useful in the low rate region and which can be interpreted as an extension of the Elias bound.
Constant compositions in the sphere packing bound for classical-quantum channels
Dalai, Marco
;
2017-01-01
Abstract
The sphere packing bound, in the form given by Shannon, Gallager, and Berlekamp, was recently extended to classical-quantum channels, and it was shown that this creates a natural setting for combining probabilistic approaches with some combinatorial ones such as the Lovász theta function. In this paper, we extend the study to the case of constant-composition codes. We first extend the sphere packing bound for classical-quantum channels to this case, and we then show that the obtained result is related to a variation of the Lovász theta function studied by Marton. We then propose a further extension to the case of varying channels and codewords with a constant conditional composition given a particular sequence. This extension is finally applied to auxiliary channels to deduce a bound, which is useful in the low rate region and which can be interpreted as an extension of the Elias bound.File | Dimensione | Formato | |
---|---|---|---|
DW-TIT-2017-IEEE.pdf
gestori archivio
Descrizione: Articolo Principale
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
301.96 kB
Formato
Adobe PDF
|
301.96 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.