Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated with many hereditary and acquired diseases. Mutations in the primary protein sequence (gain or loss of a cysteine) are most frequent in membrane and secretory proteins, correlating with the key roles of disulfide bonds. On the contrary, in the cytosol and nucleus, aberrant post-translational oxidative modifications of thiol groups, reflecting redox changes in the surrounding environment, are a more frequent cause of dysregulation of protein function. This essay highlights the regulatory functions performed by protein cysteine residues and provides a framework for understanding how mutation and/or (in)activation of this key amino acid can cause disease.

Cysteines as Redox Molecular Switches and Targets of Disease

FRA, Annamaria;
2017-01-01

Abstract

Thiol groups can undergo numerous modifications, making cysteine a unique molecular switch. Cysteine plays structural and regulatory roles as part of proteins or glutathione, contributing to maintain redox homeostasis and regulate signaling within and amongst cells. Not surprisingly therefore, cysteines are associated with many hereditary and acquired diseases. Mutations in the primary protein sequence (gain or loss of a cysteine) are most frequent in membrane and secretory proteins, correlating with the key roles of disulfide bonds. On the contrary, in the cytosol and nucleus, aberrant post-translational oxidative modifications of thiol groups, reflecting redox changes in the surrounding environment, are a more frequent cause of dysregulation of protein function. This essay highlights the regulatory functions performed by protein cysteine residues and provides a framework for understanding how mutation and/or (in)activation of this key amino acid can cause disease.
File in questo prodotto:
File Dimensione Formato  
Fra et al_Frontiers Molecular Neuroscience _2017.pdf

accesso aperto

Descrizione: full text_pdf
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/493541
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 87
social impact