Syntactic foams are lightweight composite materials that find extensive application as core materials for sandwich panels in marine and aerospace structures. While several models have been proposed to analyze the elastic response and failure of these composites at small strain rates, the understanding of syntactic foam behavior at high strain rates remains elusive. In this work, we simulate the response of polymer-glass syntactic foams under high strain rate compressive loading conditions, by using a three-dimensional micromechanical model consisting of fifty hollow spheres randomly dispersed in the matrix material. The mechanical response of the matrix is described by generalizing a phenomenological viscoplastic constitutive model from the literature to the three-dimensional stress state. The filler behavior is assumed to be linear elastic until brittle failure, which is predicted on the basis of a structural criterion for glass microballoons. The collapse of the first glass microballoon is hypothesized to trigger failure of the whole composite. Such a micromechanical model is implemented in the commercial finite element code ABAQUS. We focus on glass-vinyl ester syntactic foams and perform a parametric study to elucidate the roles of strain rate, microoballoon density, and microoballoon volume fraction on the compressive modulus, strain energy, and effective strength. Comparisons between model findings and available experimental data are presented to assess the accuracy of the proposed numerical model. Our results enable the study of syntactic foam behavior at high strain rates, for a wide range of strain rates, microoballoon densities, and microoballoon volume fractions. This knowledge is expected to aid in the design of lightweight composite materials subjected to high strain rate compressive loading.

A micromechanical model to study failure of polymer-glass syntactic foams at high strain rates

PANTEGHINI, Andrea;BARDELLA, Lorenzo;
2017-01-01

Abstract

Syntactic foams are lightweight composite materials that find extensive application as core materials for sandwich panels in marine and aerospace structures. While several models have been proposed to analyze the elastic response and failure of these composites at small strain rates, the understanding of syntactic foam behavior at high strain rates remains elusive. In this work, we simulate the response of polymer-glass syntactic foams under high strain rate compressive loading conditions, by using a three-dimensional micromechanical model consisting of fifty hollow spheres randomly dispersed in the matrix material. The mechanical response of the matrix is described by generalizing a phenomenological viscoplastic constitutive model from the literature to the three-dimensional stress state. The filler behavior is assumed to be linear elastic until brittle failure, which is predicted on the basis of a structural criterion for glass microballoons. The collapse of the first glass microballoon is hypothesized to trigger failure of the whole composite. Such a micromechanical model is implemented in the commercial finite element code ABAQUS. We focus on glass-vinyl ester syntactic foams and perform a parametric study to elucidate the roles of strain rate, microoballoon density, and microoballoon volume fraction on the compressive modulus, strain energy, and effective strength. Comparisons between model findings and available experimental data are presented to assess the accuracy of the proposed numerical model. Our results enable the study of syntactic foam behavior at high strain rates, for a wide range of strain rates, microoballoon densities, and microoballoon volume fractions. This knowledge is expected to aid in the design of lightweight composite materials subjected to high strain rate compressive loading.
File in questo prodotto:
File Dimensione Formato  
Sfs_under_high_strain_rates_Shams_CMS_2017.pdf

solo utenti autorizzati

Descrizione: full text
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.09 MB
Formato Adobe PDF
6.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/491988
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 20
social impact