Biosensing based on nanophotonic structures has shown a great potential for cost-efficient, high-speed and compact personal medical diagnostics. While plasmonic nanosensors offer high sensitivity, their intrinsically restricted resonance quality factors and strong heating due to metal absorption impose severe limitations on real life applications. Here, we demonstrate an all-dielectric sensing platform based on silicon nanodisks with strong optically-induced magnetic resonances, which are able to detect a concentration of streptavidin of as low as 10(-10) M (mol L-1) or 5 ng mL(-1), thus pushing the current detection limit by at least two orders of magnitudes. Our study suggests a new direction in biosensing based on bio-compatible, non-toxic, robust and low-loss dielectric nanoresonators with potential applications in medicine, including disease diagnosis and drug detection.

Highly sensitive biosensors based on all-dielectric nanoresonators

BONTEMPI, NICOLO';ALESSANDRI, Ivano;
2017-01-01

Abstract

Biosensing based on nanophotonic structures has shown a great potential for cost-efficient, high-speed and compact personal medical diagnostics. While plasmonic nanosensors offer high sensitivity, their intrinsically restricted resonance quality factors and strong heating due to metal absorption impose severe limitations on real life applications. Here, we demonstrate an all-dielectric sensing platform based on silicon nanodisks with strong optically-induced magnetic resonances, which are able to detect a concentration of streptavidin of as low as 10(-10) M (mol L-1) or 5 ng mL(-1), thus pushing the current detection limit by at least two orders of magnitudes. Our study suggests a new direction in biosensing based on bio-compatible, non-toxic, robust and low-loss dielectric nanoresonators with potential applications in medicine, including disease diagnosis and drug detection.
File in questo prodotto:
File Dimensione Formato  
c6nr07904k(1).pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/490814
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 131
  • ???jsp.display-item.citation.isi??? 119
social impact