Measurement systems for early and reliable detection of degenerative diseases, such as Alzheimer's disease (AD), are extremely important in clinical diagnosis. Among these, biochemical assays represent a commonly used method to distinguish patients from healthy population thanks to the sensitive recognition of specific biomarkers in biological fluids. In order to overcome actual limitations of these techniques in term of cost, standardization, and sensitivity, this study aimed to realize a low-cost highly sensitive portable point-of-care (PoC) testing system based on screen-printed electrochemical sensors. The development of the platform specifically included both the design of the sensing probe and the electronic circuit devoted to condition and acquires the transduced electric signal. The designed circuit was implemented in a printed circuit board and interfaced to a wireless system based on bluetooth data transmission in order to improve the portability of the proposed solution. Preliminary results were obtained by using controlled concentrations of electrolytic solutions and calibrating the sensors for antibodies and for a well-known protein (i.e., interleukin 8) quantified by anodic stripping voltammetry (ASV). Findings from ASV measurements showed a sensitivity of 38 μA/(ng/ml) with a tested range from 1.25 to 20 ng/ml, with a limit of detection of 2 ng/ml. Further investigation will include the validation of this PoC device by testing the concentration of a specific p53 protein isoform, which was recently identified to early correlate to AD development.

Wireless Point-of-Care Platform With Screen-Printed Sensors for Biomarkers Detection

TONELLO, Sarah;ABATE, GIULIA;BORGHETTI, Michela;MARZIANO, MARIAGRAZIA;SERPELLONI, MAURO;UBERTI, Daniela Letizia;LOPOMO, NICOLA FRANCESCO;MEMO, Maurizio;SARDINI, Emilio
2017-01-01

Abstract

Measurement systems for early and reliable detection of degenerative diseases, such as Alzheimer's disease (AD), are extremely important in clinical diagnosis. Among these, biochemical assays represent a commonly used method to distinguish patients from healthy population thanks to the sensitive recognition of specific biomarkers in biological fluids. In order to overcome actual limitations of these techniques in term of cost, standardization, and sensitivity, this study aimed to realize a low-cost highly sensitive portable point-of-care (PoC) testing system based on screen-printed electrochemical sensors. The development of the platform specifically included both the design of the sensing probe and the electronic circuit devoted to condition and acquires the transduced electric signal. The designed circuit was implemented in a printed circuit board and interfaced to a wireless system based on bluetooth data transmission in order to improve the portability of the proposed solution. Preliminary results were obtained by using controlled concentrations of electrolytic solutions and calibrating the sensors for antibodies and for a well-known protein (i.e., interleukin 8) quantified by anodic stripping voltammetry (ASV). Findings from ASV measurements showed a sensitivity of 38 μA/(ng/ml) with a tested range from 1.25 to 20 ng/ml, with a limit of detection of 2 ng/ml. Further investigation will include the validation of this PoC device by testing the concentration of a specific p53 protein isoform, which was recently identified to early correlate to AD development.
File in questo prodotto:
File Dimensione Formato  
tonello et al. 2017.pdf

accesso aperto

Tipologia: Full Text
Licenza: Dominio pubblico
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/489698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact