Multimode optical fibres are enjoying renewed attention, boosted by the urgent need to overcome the current capacity crunch of single-mode fibre (SMF) systems and by recent advances in multimode complex nonlinear optics. In this work, we demonstrate that standard multimode fibres (MMFs) can be used as ultrafast all-optical tools for the transverse beammanipulation of high-power laser pulses. Our experimental data show that the Kerr effect in a graded-index (GRIN) MMF is the driving mechanism that overcomes speckle distortions, and leads to a counterintuitive effect that results in a spatially clean output beam robust against fibre bending. Our observations demonstrate that nonlinear beam reshaping into the fundamental mode of aMMF can be achieved even in the absence of a dissipative process such as stimulated scattering (Raman or Brillouin).
Spatial beam self-cleaning in multimode fibres
WABNITZ, Stefan;
2017-01-01
Abstract
Multimode optical fibres are enjoying renewed attention, boosted by the urgent need to overcome the current capacity crunch of single-mode fibre (SMF) systems and by recent advances in multimode complex nonlinear optics. In this work, we demonstrate that standard multimode fibres (MMFs) can be used as ultrafast all-optical tools for the transverse beammanipulation of high-power laser pulses. Our experimental data show that the Kerr effect in a graded-index (GRIN) MMF is the driving mechanism that overcomes speckle distortions, and leads to a counterintuitive effect that results in a spatially clean output beam robust against fibre bending. Our observations demonstrate that nonlinear beam reshaping into the fundamental mode of aMMF can be achieved even in the absence of a dissipative process such as stimulated scattering (Raman or Brillouin).File | Dimensione | Formato | |
---|---|---|---|
10.1038@nphoton.2017.32.pdf
Open Access dal 14/09/2017
Descrizione: reprint
Tipologia:
Documento in Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
4.94 MB
Formato
Adobe PDF
|
4.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.