This paper presents a fuzzy logic to solve the inverse kinematics problem. As the complexity of robot increases, obtaining the inverse kinematics solution requires the solution of non linear equations having transcendental functions are difficult and computationally expensive. This study focuses on a serial manipulator modelled as a serial chain of rigid bodies connected by joints. A new fuzzy interactive algorithm is developed and the effectiveness is compared with other methods on a SCARA robot. It converge in all the developed simulations showing a robust performance.

A Fuzzy algorithm to study the Inverse Kinematics problem of a serial manipulator

AGGOGERI, Francesco;PELLEGRINI, Nicola;ADAMINI, Riccardo
2015-01-01

Abstract

This paper presents a fuzzy logic to solve the inverse kinematics problem. As the complexity of robot increases, obtaining the inverse kinematics solution requires the solution of non linear equations having transcendental functions are difficult and computationally expensive. This study focuses on a serial manipulator modelled as a serial chain of rigid bodies connected by joints. A new fuzzy interactive algorithm is developed and the effectiveness is compared with other methods on a SCARA robot. It converge in all the developed simulations showing a robust performance.
File in questo prodotto:
File Dimensione Formato  
AMM.783.77.pdf

solo utenti autorizzati

Descrizione: Full Text_AMM.783.77
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 498.2 kB
Formato Adobe PDF
498.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/488075
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact