Syndecan-1 is a heparan sulfate proteoglycan (HSPG) commonly upregulated in AIDS-related B lymphoid malignancies. Tat is the main HIV-1 transactivating factor that has a major role in the pathogenesis of AIDS-related lymphomas (ARL) by engaging heparan sulfate proteoglycans (HSPGs), chemokine receptors and integrins at the lymphoid cell (LC) surface. Here B-lymphoid Namalwa cell clones that do not express or overexpress syndecan-1 (EV-Ncs and SYN-Ncs, respectively) were compared for their responsiveness with Tat: in the absence of syndecan-1, Tat induces a limited EV-Nc migration via C-X-C motif chemokine receptor 4 (CXCR4), G-proteins and Rac. Syndecan-1 overexpression increases SYN-Nc responsiveness to Tat and makes this response independent from CXCR4 and G-protein and dependent instead on pp60src phosphorylation. Tat-induced SYN-Nc migration and pp60src phosphorylation require the engagement of αvβ3 integrin and consequent pp125FAK phosphorylation. This complex set of Tat-driven activations is orchestrated by the direct interaction of syndecan-1 with pp60src and its simultaneous coupling with αvβ3. The Tat/syndecan-1/αvβ3 interplay is retained in vivo and is shared also by other syndecan-1+ B-LCs, including BJAB cells, whose responsiveness to Tat is inhibited by syndecan-1 knockdown. In conclusion, overexpression of syndecan-1 confers to B-LCs an increased capacity to migrate in response to Tat, owing to a switch from a CXCR4/G-protein/Rac to a syndecan-1/αvβ3/pp60src/pp125FAK signal transduction pathway that depends on the formation of a complex in which syndecan-1 interacts with Tat via its HS-chains, with αvβ3 via its core protein ectodomain and with pp60src via its intracellular tail. These findings have implications in ARL progression and may help in identifying new therapeutical targets for the treatment of AIDS-associated neoplasia

Syndecan-1 increases B-lymphoid cell extravasation in response to HIV-1 Tat via αvβ3/pp60src/pp125FAK pathway

URBINATI, Chiara Eva;GRILLO, Elisabetta;CHIODELLI, Paola;TOBIA, Chiara;CACCURI, Francesca;Fiorentini, S.;RUSNATI, Marco
2017-01-01

Abstract

Syndecan-1 is a heparan sulfate proteoglycan (HSPG) commonly upregulated in AIDS-related B lymphoid malignancies. Tat is the main HIV-1 transactivating factor that has a major role in the pathogenesis of AIDS-related lymphomas (ARL) by engaging heparan sulfate proteoglycans (HSPGs), chemokine receptors and integrins at the lymphoid cell (LC) surface. Here B-lymphoid Namalwa cell clones that do not express or overexpress syndecan-1 (EV-Ncs and SYN-Ncs, respectively) were compared for their responsiveness with Tat: in the absence of syndecan-1, Tat induces a limited EV-Nc migration via C-X-C motif chemokine receptor 4 (CXCR4), G-proteins and Rac. Syndecan-1 overexpression increases SYN-Nc responsiveness to Tat and makes this response independent from CXCR4 and G-protein and dependent instead on pp60src phosphorylation. Tat-induced SYN-Nc migration and pp60src phosphorylation require the engagement of αvβ3 integrin and consequent pp125FAK phosphorylation. This complex set of Tat-driven activations is orchestrated by the direct interaction of syndecan-1 with pp60src and its simultaneous coupling with αvβ3. The Tat/syndecan-1/αvβ3 interplay is retained in vivo and is shared also by other syndecan-1+ B-LCs, including BJAB cells, whose responsiveness to Tat is inhibited by syndecan-1 knockdown. In conclusion, overexpression of syndecan-1 confers to B-LCs an increased capacity to migrate in response to Tat, owing to a switch from a CXCR4/G-protein/Rac to a syndecan-1/αvβ3/pp60src/pp125FAK signal transduction pathway that depends on the formation of a complex in which syndecan-1 interacts with Tat via its HS-chains, with αvβ3 via its core protein ectodomain and with pp60src via its intracellular tail. These findings have implications in ARL progression and may help in identifying new therapeutical targets for the treatment of AIDS-associated neoplasia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/486662
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact