The index tracking problem is the problem of determining a portfolio of assets whose performance replicates, as closely as possible, that of a financial market index chosen as benchmark. In the enhanced index tracking problem the portfolio is expected to outperform the benchmark with minimal additional risk. In this paper, we study the bi-objective enhanced index tracking problem where two competing objectives, i.e., the expected excess return of the portfolio over the benchmark and the tracking error, are taken into consideration. A bi-objective Mixed Integer Linear Programming formulation for the problem is proposed. Computational results on a set of benchmark instances are given, along with a detailed out-of-sample analysis of the performance of the optimal portfolios selected by the proposed model. Then, a heuristic procedure is designed to build an approximation of the set of Pareto optimal solutions. We test the proposed procedure on a reference set of Pareto optimal solutions. Computational results show that the procedure is significantly faster than the exact computation and provides an extremely accurate approximation.
A heuristic framework for the bi-objective enhanced index tracking problem
FILIPPI, Carlo;GUASTAROBA, Gianfranco;SPERANZA, Maria Grazia
2016-01-01
Abstract
The index tracking problem is the problem of determining a portfolio of assets whose performance replicates, as closely as possible, that of a financial market index chosen as benchmark. In the enhanced index tracking problem the portfolio is expected to outperform the benchmark with minimal additional risk. In this paper, we study the bi-objective enhanced index tracking problem where two competing objectives, i.e., the expected excess return of the portfolio over the benchmark and the tracking error, are taken into consideration. A bi-objective Mixed Integer Linear Programming formulation for the problem is proposed. Computational results on a set of benchmark instances are given, along with a detailed out-of-sample analysis of the performance of the optimal portfolios selected by the proposed model. Then, a heuristic procedure is designed to build an approximation of the set of Pareto optimal solutions. We test the proposed procedure on a reference set of Pareto optimal solutions. Computational results show that the procedure is significantly faster than the exact computation and provides an extremely accurate approximation.File | Dimensione | Formato | |
---|---|---|---|
MultiObjKernelRev4-1.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
2.25 MB
Formato
Adobe PDF
|
2.25 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.