SiO2/TiO2 core/shell beads (T-rex) were designed, fabricated and tested for Raman detection of environmental CO2 under real-working conditions, as those encountered, for example, in solar-to-fuel conversion reactions. The exploitation of light trapping and morphology dependent resonances was crucial for extending the limit of detection of CO2 adsorbed on TiO2 surfaces. T-rex beads allowed for achieving surface enhanced Raman scattering (SERS) without using plasmonic metals showing high-efficiency, fast response and reproducibility in CO2 detection in both air and solvents. The dependence of SERS activity on Mie-type resonances was investigated through a systematic comparison of experimental data and numerical simulations, demonstrating that T-rex beads can be tailored for the detection of gaseous environmental pollutants on the basis of simple, Mie-scattering based calculations. Three-dimensional T-rex colloidal crystals were also successfully tested in precise, in situ, real time detection of CO2 as a function of different temperature-sweep cycles.

Plasmon-free SERS detection of environmental CO2on TiO2surfaces

BONTEMPI, NICOLO';CARLETTI, Luca;DE ANGELIS, Costantino;ALESSANDRI, Ivano
2016-01-01

Abstract

SiO2/TiO2 core/shell beads (T-rex) were designed, fabricated and tested for Raman detection of environmental CO2 under real-working conditions, as those encountered, for example, in solar-to-fuel conversion reactions. The exploitation of light trapping and morphology dependent resonances was crucial for extending the limit of detection of CO2 adsorbed on TiO2 surfaces. T-rex beads allowed for achieving surface enhanced Raman scattering (SERS) without using plasmonic metals showing high-efficiency, fast response and reproducibility in CO2 detection in both air and solvents. The dependence of SERS activity on Mie-type resonances was investigated through a systematic comparison of experimental data and numerical simulations, demonstrating that T-rex beads can be tailored for the detection of gaseous environmental pollutants on the basis of simple, Mie-scattering based calculations. Three-dimensional T-rex colloidal crystals were also successfully tested in precise, in situ, real time detection of CO2 as a function of different temperature-sweep cycles.
File in questo prodotto:
File Dimensione Formato  
Alessandri_Nanoscale 2016.pdf

solo utenti autorizzati

Descrizione: full text
Tipologia: Full Text
Licenza: PUBBLICO - Pubblico senza Copyright
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/484920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 68
social impact