Power generation using Organic Rankine Cycle was studied in this paper in case of both low and high temperature cycles, exploiting respectively a geothermal heat source available at 167 °C, and heat available at 300 °C from the combustion of biomass. In particular we assess the feasibility of employing mixture of working fluids, in the case of replacing the typical once-through (OT) evaporator with the pool boiler (PB) technology, typically adopted for pure fluids. The analysis evidenced that in general the OT evaporator shows a slightly improved cycle performance in comparison to the PB and it results in some cases advantageous with respect to the pure working fluid. For instance in case of low temperature cycle, the best thermodynamic performances are obtained with mixture of i-C5 and 75% n-C4 in case of OT evaporator, yielding a recovery efficiency higher than the case with pure i-C5 (7.7 vs. 7.4%) given the relatively higher values of both the recovery factor and cycle efficiency. Implementation of PB did not affect the plant performance significantly which shows the feasibility of having PB with potentially easier control.

Mixture of working fluids in ORC plants with pool boiler evaporator

IORA, Paolo Giulio;INVERNIZZI, Costante Mario
2016-01-01

Abstract

Power generation using Organic Rankine Cycle was studied in this paper in case of both low and high temperature cycles, exploiting respectively a geothermal heat source available at 167 °C, and heat available at 300 °C from the combustion of biomass. In particular we assess the feasibility of employing mixture of working fluids, in the case of replacing the typical once-through (OT) evaporator with the pool boiler (PB) technology, typically adopted for pure fluids. The analysis evidenced that in general the OT evaporator shows a slightly improved cycle performance in comparison to the PB and it results in some cases advantageous with respect to the pure working fluid. For instance in case of low temperature cycle, the best thermodynamic performances are obtained with mixture of i-C5 and 75% n-C4 in case of OT evaporator, yielding a recovery efficiency higher than the case with pure i-C5 (7.7 vs. 7.4%) given the relatively higher values of both the recovery factor and cycle efficiency. Implementation of PB did not affect the plant performance significantly which shows the feasibility of having PB with potentially easier control.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/484259
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact