Recently, inkjet printing technology has received growing attention as a method to produce low-cost large-area electronics, sensors, and antennas on polymer substrates. This technology relies on printing techniques to deposit electrically functional materials onto polymer substrates to fabricate electronic components or sensing elements. In this paper, we applied an inkjet printed technology for the development and characterization of films on a polymer substrate aiming at giving design considerations for the optimization of strain sensors or printed electronics obtained by inkjet printing. Two inks were tested over a polyimide substrate, a water-based conductive polymer, PEDOT:PSS, and a silver nanoparticles ink. Their sensing capabilities were investigated under tensile conditions and various strain histories (strain ramp; cyclic loading-unloading tests; application of constant strain over prolonged time) aiming at highlighting the correlation between electrical response, applied strain, time and mechanical histories. Furthermore, the mechanical viscoelastic response of the substrate was investigated under similar strain histories interpreting the results at the light of the substrate deformational characteristics and evaluating its influence. (C) 2016

Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing

BORGHETTI, Michela;SERPELLONI, MAURO;SARDINI, Emilio;PANDINI, Stefano
2016-01-01

Abstract

Recently, inkjet printing technology has received growing attention as a method to produce low-cost large-area electronics, sensors, and antennas on polymer substrates. This technology relies on printing techniques to deposit electrically functional materials onto polymer substrates to fabricate electronic components or sensing elements. In this paper, we applied an inkjet printed technology for the development and characterization of films on a polymer substrate aiming at giving design considerations for the optimization of strain sensors or printed electronics obtained by inkjet printing. Two inks were tested over a polyimide substrate, a water-based conductive polymer, PEDOT:PSS, and a silver nanoparticles ink. Their sensing capabilities were investigated under tensile conditions and various strain histories (strain ramp; cyclic loading-unloading tests; application of constant strain over prolonged time) aiming at highlighting the correlation between electrical response, applied strain, time and mechanical histories. Furthermore, the mechanical viscoelastic response of the substrate was investigated under similar strain histories interpreting the results at the light of the substrate deformational characteristics and evaluating its influence. (C) 2016
File in questo prodotto:
File Dimensione Formato  
Mechanical behavior of strain sensors based on PEDOTPSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing.pdf

solo utenti autorizzati

Descrizione: Mechanical behavior of strain sensors based on PEDOT:PSS and silver nanoparticles inks deposited on polymer substrate by inkjet printing
Tipologia: Full Text
Licenza: DRM non definito
Dimensione 3.07 MB
Formato Adobe PDF
3.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/484101
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 87
social impact