The interest on micro cutting processes is proved by the attention of industries on this topic. This trend moves the researches on micro cutting toward different aspects. A modelling procedure for forecasting cutting forces in microcutting, considering all phenomena involved in micro scale, can be of interest for industries allowing the evaluation of process quality. This paper deals with modelling of cutting forces in micromilling operations of channels. The proposed procedure is a combination of a force model based on specific cutting pressure and instantaneous chip section, estimated considering the tool run-out contribution, an optimisation strategy (particles swarm optimisation), and data coming from experimental tests realised on a sample of titanium alloy (Ti6Al4V). The comparisons between experimental and analytical data, and the evaluation of the uncertainty of the calibrated model show the good ability of the proposed procedure for defining analytical model for force prediction in channels micromilling.
Force modelling in micromilling of channels
ATTANASIO, Aldo;GARBELLINI, ALESSANDRO;CERETTI, Elisabetta;GIARDINI, Claudio
2015-01-01
Abstract
The interest on micro cutting processes is proved by the attention of industries on this topic. This trend moves the researches on micro cutting toward different aspects. A modelling procedure for forecasting cutting forces in microcutting, considering all phenomena involved in micro scale, can be of interest for industries allowing the evaluation of process quality. This paper deals with modelling of cutting forces in micromilling operations of channels. The proposed procedure is a combination of a force model based on specific cutting pressure and instantaneous chip section, estimated considering the tool run-out contribution, an optimisation strategy (particles swarm optimisation), and data coming from experimental tests realised on a sample of titanium alloy (Ti6Al4V). The comparisons between experimental and analytical data, and the evaluation of the uncertainty of the calibrated model show the good ability of the proposed procedure for defining analytical model for force prediction in channels micromilling.File | Dimensione | Formato | |
---|---|---|---|
Force modelling in micromilling of channels.pdf
solo utenti autorizzati
Descrizione: Paper full text
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
851.26 kB
Formato
Adobe PDF
|
851.26 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.