Stochastically driven nonlinear processes limit the number of amplified modes in a natural system due to competitive mode interaction, which is accompanied by loss of coherence when increasing the complexity of the system. Specifically, we find that modulation instability, which exhibits great fluctuations when it spontaneously grows from noise in conservative systems, may possess a high degree of coherence in dissipative laser system with gain. Nonlinear mode interactions can be competitive or cooperative: adjusting the intracavity polarization state controls the process of loss of coherence. Single-shot spectra reveal that, first, the fibre laser redistributes its energy from the center wavelength mode into sidebands through parametric instabilities. Subsequently, longitudinal modes are populated via cascaded four-wave-mixing. Parametric frequency conversion populates longitudinal modes with a random distribution of position, intensity and polarization, resulting in partially (rather than highly) coherent pulses. These dynamics unveil a new route towards complex pattern formation in nonlinear laser systems, and they may be also beneficial for the understanding of supercontinuum, Kerr-combs phenomena, and optical rogue waves.

Coherence loss of partially mode-locked fibre laser

WABNITZ, Stefan;
2016-01-01

Abstract

Stochastically driven nonlinear processes limit the number of amplified modes in a natural system due to competitive mode interaction, which is accompanied by loss of coherence when increasing the complexity of the system. Specifically, we find that modulation instability, which exhibits great fluctuations when it spontaneously grows from noise in conservative systems, may possess a high degree of coherence in dissipative laser system with gain. Nonlinear mode interactions can be competitive or cooperative: adjusting the intracavity polarization state controls the process of loss of coherence. Single-shot spectra reveal that, first, the fibre laser redistributes its energy from the center wavelength mode into sidebands through parametric instabilities. Subsequently, longitudinal modes are populated via cascaded four-wave-mixing. Parametric frequency conversion populates longitudinal modes with a random distribution of position, intensity and polarization, resulting in partially (rather than highly) coherent pulses. These dynamics unveil a new route towards complex pattern formation in nonlinear laser systems, and they may be also beneficial for the understanding of supercontinuum, Kerr-combs phenomena, and optical rogue waves.
File in questo prodotto:
File Dimensione Formato  
srep24995.pdf

accesso aperto

Descrizione: reprint
Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/477682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact