Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS Institutional Research Information System - OPENBS Open Archive UniBS
Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We
aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide
polymorphisms (SNPs) for cancer at 13 anatomical sites.
Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association
studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology
(GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability
attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers.
Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, hl
2,
on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking
characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the
heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of
cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally
statistically significant correlations, specifically kidney and testes (ρ = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL)
and pediatric osteosarcoma (ρ = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (ρ = 0.51, SE =0.18), and
bladder and lung (ρ = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs
between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that
the genetic etiology for the same disease can vary by population and environmental exposures.
Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for
investigation.
Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types
Background: Studies of related individuals have consistently demonstrated notable familial aggregation of cancer. We
aim to estimate the heritability and genetic correlation attributable to the additive effects of common single-nucleotide
polymorphisms (SNPs) for cancer at 13 anatomical sites.
Methods: Between 2007 and 2014, the US National Cancer Institute has generated data from genome-wide association
studies (GWAS) for 49 492 cancer case patients and 34 131 control patients. We apply novel mixed model methodology
(GCTA) to this GWAS data to estimate the heritability of individual cancers, as well as the proportion of heritability
attributable to cigarette smoking in smoking-related cancers, and the genetic correlation between pairs of cancers.
Results: GWAS heritability was statistically significant at nearly all sites, with the estimates of array-based heritability, hl
2,
on the liability threshold (LT) scale ranging from 0.05 to 0.38. Estimating the combined heritability of multiple smoking
characteristics, we calculate that at least 24% (95% confidence interval [CI] = 14% to 37%) and 7% (95% CI = 4% to 11%) of the
heritability for lung and bladder cancer, respectively, can be attributed to genetic determinants of smoking. Most pairs of
cancers studied did not show evidence of strong genetic correlation. We found only four pairs of cancers with marginally
statistically significant correlations, specifically kidney and testes (ρ = 0.73, SE = 0.28), diffuse large B-cell lymphoma (DLBCL)
and pediatric osteosarcoma (ρ = 0.53, SE = 0.21), DLBCL and chronic lymphocytic leukemia (CLL) (ρ = 0.51, SE =0.18), and
bladder and lung (ρ = 0.35, SE = 0.14). Correlation analysis also indicates that the genetic architecture of lung cancer differs
between a smoking population of European ancestry and a nonsmoking Asian population, allowing for the possibility that
the genetic etiology for the same disease can vary by population and environmental exposures.
Conclusion: Our results provide important insights into the genetic architecture of cancers and suggest new avenues for
investigation.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/464123
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
64
131
117
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.