This paper covers a novel methodology for the realization of devices that are able to harvest energy from background mechanical vibrations. The novelties reside in the nonlinear mechanism ruling the harvester behavior and the printed technology used to realize the lab-scale prototype. The nonlinearity of the harvester is desirable, because vibrational energy is usually distributed in a band at low frequency and does not, therefore, lend itself to harvesting through a (linear) resonant device. Printed technology has the advantage of being ultracheap and, hence, suitable for proof-of-concept and rapid laboratory prototyping. In particular, inkjet printing technology affords the realization of low-cost electrodes with high resolution and multiple functional layers. This paper covers the mechanical properties of a snap-through buckling beam and details the results of experiments aimed at investigating the (nonlinear) mechanical properties as well as a theoretical fit to the experimen- tal observations. Moreover, the electrical response of the device and, hence, its suitability for energy-harvesting applications are addressed. Powers on the order of 100 nW have been experimentally estimated by a lab-scale prototype with the aim of demonstrating the proof-of-concept of the snap-through buckling mechanism for energy harvesting.

A Low-Cost Snap-Through-Buckling Inkjet-Printed Device for Vibrational Energy Harvesting

FERRARI, Vittorio;FERRARI, Marco
2015-01-01

Abstract

This paper covers a novel methodology for the realization of devices that are able to harvest energy from background mechanical vibrations. The novelties reside in the nonlinear mechanism ruling the harvester behavior and the printed technology used to realize the lab-scale prototype. The nonlinearity of the harvester is desirable, because vibrational energy is usually distributed in a band at low frequency and does not, therefore, lend itself to harvesting through a (linear) resonant device. Printed technology has the advantage of being ultracheap and, hence, suitable for proof-of-concept and rapid laboratory prototyping. In particular, inkjet printing technology affords the realization of low-cost electrodes with high resolution and multiple functional layers. This paper covers the mechanical properties of a snap-through buckling beam and details the results of experiments aimed at investigating the (nonlinear) mechanical properties as well as a theoretical fit to the experimen- tal observations. Moreover, the electrical response of the device and, hence, its suitability for energy-harvesting applications are addressed. Powers on the order of 100 nW have been experimentally estimated by a lab-scale prototype with the aim of demonstrating the proof-of-concept of the snap-through buckling mechanism for energy harvesting.
File in questo prodotto:
File Dimensione Formato  
459390.pdf

gestori archivio

Descrizione: Full Text
Tipologia: Full Text
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.48 MB
Formato Adobe PDF
7.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/459390
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 39
social impact