We report an optical contrast study of graphene oxide on 72 nm Al2O3/Si(100) and 300 nm SiO2/Si(100) as a function of its reduction degree. The reduction has been performed by means of ultrahigh vacuum thermal annealing from 25 °C (pristine graphene oxide) to 670 °C. In parallel to the optical contrast investigation, performed with optical microscopy, the graphene oxide films have been characterized with core level X-ray photoemission spectroscopy and micro- Raman spectroscopy. The optical contrast of graphene oxide (normalized to the one measured for pure graphene) on both substrates ranges from ∼0.4 to 1.0 for pristine and 670 °C annealed graphene oxide, respectively. Optical microscopy and X-ray photoemission spectroscopy data have been crosscorrelated, leading to calibration graphs that demonstrate that just by simply measuring the optical contrast of graphene oxide one can determine with very good approximation the fraction of sp2 hybridized carbon.

Use of Optical Contrast To Estimate the Degree of Reduction of Graphene Oxide

DONARELLI, Maurizio;
2013-01-01

Abstract

We report an optical contrast study of graphene oxide on 72 nm Al2O3/Si(100) and 300 nm SiO2/Si(100) as a function of its reduction degree. The reduction has been performed by means of ultrahigh vacuum thermal annealing from 25 °C (pristine graphene oxide) to 670 °C. In parallel to the optical contrast investigation, performed with optical microscopy, the graphene oxide films have been characterized with core level X-ray photoemission spectroscopy and micro- Raman spectroscopy. The optical contrast of graphene oxide (normalized to the one measured for pure graphene) on both substrates ranges from ∼0.4 to 1.0 for pristine and 670 °C annealed graphene oxide, respectively. Optical microscopy and X-ray photoemission spectroscopy data have been crosscorrelated, leading to calibration graphs that demonstrate that just by simply measuring the optical contrast of graphene oxide one can determine with very good approximation the fraction of sp2 hybridized carbon.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/459238
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact