Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit. This demonstrates the possibility of further integration of metal oxide nanostructures into efficient thermoelectric devices.
Integration of ZnO and CuO nanowires into a thermoelectric module
ZAPPA, Dario;DALOLA, Simone;FAGLIA, Guido;COMINI, Elisabetta;FERRONI, Matteo;SOLDANO, Caterina;FERRARI, Vittorio;SBERVEGLIERI, Giorgio
2014-01-01
Abstract
Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit. This demonstrates the possibility of further integration of metal oxide nanostructures into efficient thermoelectric devices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.