Arsenic is widespread in soils, water and air. In natural water the main forms are arsenite (As(III)) and arsenate (As(V)). The consumption of water containing high concentration of arsenic produces serious effects on human health, like skin and lung cancer. In Italy, Legislative Decree 2001/31 reduced the limit of arsenic from 50 to 10 mg/L, in agreement with the European Directive 98/83/EC. As consequence, many drinking water treatment plant companies needed to upgrade the existing plants where arsenic was previously removed or to build up new plants for arsenic removal when this contaminant was not previously a critical parameter. Arsenic removal from water may occur through the precipitation with iron or aluminum salts, adsorption on iron hydroxide or granular activated alumina (AA), reverse osmosis and ion exchange (IE). Some of the above techniques, especially precipitation, adsorption with AA and IE, can reach good arsenic removal yields only if arsenic is oxidized. The aim of the present work is to investigate the efficiency of the oxidation of As(III) by means of four conventional oxidants (chlorine dioxide, sodium hypochlorite, potassium permanganate and monochloramine) with different test conditions: different type of water (demineralised and real water), different pH values (5.7e6e7 and 8) and different doses of chemicals. The arsenic oxidation yields were excellent with potassium permanganate, very good with hypochlorite and low with monochloramine. These results were observed both on demineralised and real water for all the tested reagents with the exception of chlorine dioxide that showed a better arsenic oxidation on real groundwater than demineralised water.

Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine

SORLINI, Sabrina;GIALDINI, Francesca
2010-01-01

Abstract

Arsenic is widespread in soils, water and air. In natural water the main forms are arsenite (As(III)) and arsenate (As(V)). The consumption of water containing high concentration of arsenic produces serious effects on human health, like skin and lung cancer. In Italy, Legislative Decree 2001/31 reduced the limit of arsenic from 50 to 10 mg/L, in agreement with the European Directive 98/83/EC. As consequence, many drinking water treatment plant companies needed to upgrade the existing plants where arsenic was previously removed or to build up new plants for arsenic removal when this contaminant was not previously a critical parameter. Arsenic removal from water may occur through the precipitation with iron or aluminum salts, adsorption on iron hydroxide or granular activated alumina (AA), reverse osmosis and ion exchange (IE). Some of the above techniques, especially precipitation, adsorption with AA and IE, can reach good arsenic removal yields only if arsenic is oxidized. The aim of the present work is to investigate the efficiency of the oxidation of As(III) by means of four conventional oxidants (chlorine dioxide, sodium hypochlorite, potassium permanganate and monochloramine) with different test conditions: different type of water (demineralised and real water), different pH values (5.7e6e7 and 8) and different doses of chemicals. The arsenic oxidation yields were excellent with potassium permanganate, very good with hypochlorite and low with monochloramine. These results were observed both on demineralised and real water for all the tested reagents with the exception of chlorine dioxide that showed a better arsenic oxidation on real groundwater than demineralised water.
File in questo prodotto:
File Dimensione Formato  
WR 2010.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 559.2 kB
Formato Adobe PDF
559.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/45864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 191
  • ???jsp.display-item.citation.isi??? 171
social impact