We start from the embedding of the Klein model of a hyperbolic plane H over a Euclidean field K in its direct motion group G := PSL_2 (K) and of both in PG(3, K). We present a geometric procedure to obtain loops which are related to suitable regular subsets of direct motions as transversals of the coset space G/D, where D is the subgroup of hyperbolic rotations fixing a given point o ∈ H. We investigate some properties of such loops and we determine their automorphism groups.

A Geometric Environment for Building up Loops

PASOTTI, Stefano;ZIZIOLI, Elena
2015-01-01

Abstract

We start from the embedding of the Klein model of a hyperbolic plane H over a Euclidean field K in its direct motion group G := PSL_2 (K) and of both in PG(3, K). We present a geometric procedure to obtain loops which are related to suitable regular subsets of direct motions as transversals of the coset space G/D, where D is the subgroup of hyperbolic rotations fixing a given point o ∈ H. We investigate some properties of such loops and we determine their automorphism groups.
File in questo prodotto:
File Dimensione Formato  
loop-sezione-res-math.pdf

Open Access dal 02/04/2016

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Creative Commons 3.6
Dimensione 274.68 kB
Formato Adobe PDF
274.68 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/458350
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact