The internal wave-field of a Y-shaped lake (Lake Como, North Italy) was investigated over a 3-year long period applying wavelet time–frequency analysis to temperature and wind data time series, recorded at the edge of each of the three arms. The comparison with the results from a modal model allowed to iden- tify the presence of both first and second vertical modes of oscillations. The field data analysis underlined a heterogeneous baroclinic response with the eastern arm decoupled from the remaining part of the lake constituted by the northern and western arms (north–south west transect). This disjoined response is expected to enhance the water exchange between the northern and the western arm, with relevant con- sequences on the inter-basins water exchanges and on the distribution of chemical and biological species. In the north–south west transect the analysis of the low power signals in winter underlined a residual internal wave activity ascribed to the first vertical free mode of oscillation (V1H1)

Internal wave weather heterogeneity in a deep multi-basin subalpine lake resulting from wavelet transform and numerical analysis

VALERIO, Giulia;PILOTTI, Marco;
2014-01-01

Abstract

The internal wave-field of a Y-shaped lake (Lake Como, North Italy) was investigated over a 3-year long period applying wavelet time–frequency analysis to temperature and wind data time series, recorded at the edge of each of the three arms. The comparison with the results from a modal model allowed to iden- tify the presence of both first and second vertical modes of oscillations. The field data analysis underlined a heterogeneous baroclinic response with the eastern arm decoupled from the remaining part of the lake constituted by the northern and western arms (north–south west transect). This disjoined response is expected to enhance the water exchange between the northern and the western arm, with relevant con- sequences on the inter-basins water exchanges and on the distribution of chemical and biological species. In the north–south west transect the analysis of the low power signals in winter underlined a residual internal wave activity ascribed to the first vertical free mode of oscillation (V1H1)
File in questo prodotto:
File Dimensione Formato  
Advances_Water_Resources_2014.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/454525
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact