Hydraulic risk maps provide the baseline for land use and emergency planning. Accordingly, they should convey clear information on the potential physical implications of the different hazards to the stakeholders. This paper presents a vulnerability criterion focused on human stability in a flow specifically devised for rapidly evolving floods where life, before than economic values, might be threatened. The human body is conceptualized as a set of cylinders and its stability to slipping and toppling is assessed by forces and moments equilibrium. Moreover, a depth threshold to consider drowning is assumed. In order to widen its scope of application, the model takes the destabilizing effect of local slope (so far disregarded in the literature) and fluid density into account. The resulting vulnerability classification could be naturally sub- divided in three levels (low, medium, and high) that are limited by two stability curves for children and adults, respectively. In comparison with the most advanced literature conceptual approaches, the proposed model is weakly parameterized and the computed thresholds fit better the available experimental data sets. A code that implements the proposed algorithm is provided.
A conceptual model of people’s vulnerability to flood
MILANESI, Luca;PILOTTI, Marco;RANZI, Roberto
2015-01-01
Abstract
Hydraulic risk maps provide the baseline for land use and emergency planning. Accordingly, they should convey clear information on the potential physical implications of the different hazards to the stakeholders. This paper presents a vulnerability criterion focused on human stability in a flow specifically devised for rapidly evolving floods where life, before than economic values, might be threatened. The human body is conceptualized as a set of cylinders and its stability to slipping and toppling is assessed by forces and moments equilibrium. Moreover, a depth threshold to consider drowning is assumed. In order to widen its scope of application, the model takes the destabilizing effect of local slope (so far disregarded in the literature) and fluid density into account. The resulting vulnerability classification could be naturally sub- divided in three levels (low, medium, and high) that are limited by two stability curves for children and adults, respectively. In comparison with the most advanced literature conceptual approaches, the proposed model is weakly parameterized and the computed thresholds fit better the available experimental data sets. A code that implements the proposed algorithm is provided.File | Dimensione | Formato | |
---|---|---|---|
WRR_2015.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
DRM non definito
Dimensione
1.54 MB
Formato
Adobe PDF
|
1.54 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.