Hydraulic risk maps provide the baseline for land use and emergency planning. Accordingly, they should convey clear information on the potential physical implications of the different hazards to the stakeholders. This paper presents a vulnerability criterion focused on human stability in a flow specifically devised for rapidly evolving floods where life, before than economic values, might be threatened. The human body is conceptualized as a set of cylinders and its stability to slipping and toppling is assessed by forces and moments equilibrium. Moreover, a depth threshold to consider drowning is assumed. In order to widen its scope of application, the model takes the destabilizing effect of local slope (so far disregarded in the literature) and fluid density into account. The resulting vulnerability classification could be naturally sub- divided in three levels (low, medium, and high) that are limited by two stability curves for children and adults, respectively. In comparison with the most advanced literature conceptual approaches, the proposed model is weakly parameterized and the computed thresholds fit better the available experimental data sets. A code that implements the proposed algorithm is provided.

A conceptual model of people’s vulnerability to flood

MILANESI, Luca;PILOTTI, Marco;RANZI, Roberto
2015-01-01

Abstract

Hydraulic risk maps provide the baseline for land use and emergency planning. Accordingly, they should convey clear information on the potential physical implications of the different hazards to the stakeholders. This paper presents a vulnerability criterion focused on human stability in a flow specifically devised for rapidly evolving floods where life, before than economic values, might be threatened. The human body is conceptualized as a set of cylinders and its stability to slipping and toppling is assessed by forces and moments equilibrium. Moreover, a depth threshold to consider drowning is assumed. In order to widen its scope of application, the model takes the destabilizing effect of local slope (so far disregarded in the literature) and fluid density into account. The resulting vulnerability classification could be naturally sub- divided in three levels (low, medium, and high) that are limited by two stability curves for children and adults, respectively. In comparison with the most advanced literature conceptual approaches, the proposed model is weakly parameterized and the computed thresholds fit better the available experimental data sets. A code that implements the proposed algorithm is provided.
File in questo prodotto:
File Dimensione Formato  
WRR_2015.pdf

gestori archivio

Tipologia: Full Text
Licenza: DRM non definito
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11379/454524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 93
  • ???jsp.display-item.citation.isi??? 88
social impact