Three-dimensional elastic solutions are obtained for a functionally graded thick circular plate subject to axisymmetric conditions. We consider a isotropic material where the Young modulus depends exponentially on the position along the thickness, while the Poisson ratio is constant. The solution method utilises a Plevako’s representation form which reduces the problem to the construction of a potential function satisfying a linear fourth-order partial differential equation. We write this potential function in terms of Bessel functions and we pointwise assign mixed boundary conditions. The analytic solution is obtained in a general form and explicitly presented by assuming transversal load on the upper face and zero displacements on the mantle; this is done by superposing the solutions of problems with suitably imposed radial displacement. We validate the solution by means of a finite element approach; in this way, we highlight the effects of the material inhomogeneity and the limits of the employed numerical method near the mantle, where the solution shows a large sensitivity to the boundary conditions.
Three-dimensional elastic solutions for functionally graded circular plates
BARDELLA, Lorenzo
2011-01-01
Abstract
Three-dimensional elastic solutions are obtained for a functionally graded thick circular plate subject to axisymmetric conditions. We consider a isotropic material where the Young modulus depends exponentially on the position along the thickness, while the Poisson ratio is constant. The solution method utilises a Plevako’s representation form which reduces the problem to the construction of a potential function satisfying a linear fourth-order partial differential equation. We write this potential function in terms of Bessel functions and we pointwise assign mixed boundary conditions. The analytic solution is obtained in a general form and explicitly presented by assuming transversal load on the upper face and zero displacements on the mantle; this is done by superposing the solutions of problems with suitably imposed radial displacement. We validate the solution by means of a finite element approach; in this way, we highlight the effects of the material inhomogeneity and the limits of the employed numerical method near the mantle, where the solution shows a large sensitivity to the boundary conditions.File | Dimensione | Formato | |
---|---|---|---|
Sburlati_Bardella_FGM_EJMAS_2011.pdf
gestori archivio
Tipologia:
Full Text
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.11 MB
Formato
Adobe PDF
|
1.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.