The use of narrow band gap semiconductors such as PbS may expand the light absorption range to the near-infrared region in quantum-dot-sensitized solar cells (QDSCs), increasing the generated photocurrent. However, the application of PbS as a sensitizer in QDSCs causes some problems of stability and high recombination. Here, we show that the direct growth of a CdS coating layer on previously deposited PbS by the simple method of successive ionic layer adsorption and reaction (SILAR) minimizes these problems. A remarkable short-circuit current density for PbS/CdS QDSCs is demonstrated, !11 mA/ cm2, compared to that of PbS QDSCs, with photocurrents lower than 4 mA/cm2, using polysulfide electrolyte in both cells. The cell efficiency reached a promising 2.21% under 1 sun of simulated irradiation (AM1.5G, 100 mW/cm2). Enhancement of the solar cell performance beyond the arithmetic addition of the efficiencies of the single constituents (PbS and CdS) is demonstrated for the nanocomposite PbS/CdS configuration. PbS dramatically increases the obtained photocurrents, and the CdS coating stabilizes the solar cell behavior.
Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes
CONCINA, Isabella;VOMIERO, Alberto;
2011-01-01
Abstract
The use of narrow band gap semiconductors such as PbS may expand the light absorption range to the near-infrared region in quantum-dot-sensitized solar cells (QDSCs), increasing the generated photocurrent. However, the application of PbS as a sensitizer in QDSCs causes some problems of stability and high recombination. Here, we show that the direct growth of a CdS coating layer on previously deposited PbS by the simple method of successive ionic layer adsorption and reaction (SILAR) minimizes these problems. A remarkable short-circuit current density for PbS/CdS QDSCs is demonstrated, !11 mA/ cm2, compared to that of PbS QDSCs, with photocurrents lower than 4 mA/cm2, using polysulfide electrolyte in both cells. The cell efficiency reached a promising 2.21% under 1 sun of simulated irradiation (AM1.5G, 100 mW/cm2). Enhancement of the solar cell performance beyond the arithmetic addition of the efficiencies of the single constituents (PbS and CdS) is demonstrated for the nanocomposite PbS/CdS configuration. PbS dramatically increases the obtained photocurrents, and the CdS coating stabilizes the solar cell behavior.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.